YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Data-Driven Monitoring System for Preventing the Collapse of Scaffolding Structures

    Source: Journal of Construction Engineering and Management:;2018:;Volume ( 144 ):;issue: 008
    Author:
    Cho Chunhee;Kim Kyungki;Park JeeWoong;Cho Yong K.
    DOI: 10.1061/(ASCE)CO.1943-7862.0001535
    Publisher: American Society of Civil Engineers
    Abstract: As temporary structures, scaffolds have essential roles to hold workers, materials, and equipment throughout construction activities. However, because a safety inspection for scaffolds is primarily visual and labor intensive, the OSHA standards related to scaffolds are frequently violated. Improper management of scaffolds has caused scaffolding collapses that have a potentially detrimental effect and liability on workers’ lives. This paper discusses the significance of scaffolding collapses and explores a method to perform scaffolding monitoring. To establish an integrated method, this research cross-connects various components (e.g., strain data, finite element model (FEM)-based structural analysis, machine learning, and an actual scaffold) in the presented framework. More specifically, this framework for a smart monitoring system is involved with: (1) developing a wireless strain sensing module for data collection, (2) modeling an FEM and learning data for failure mechanisms through FEM to characterize scaffold behaviors under certain loading conditions, and (3) investigating a machine-learning algorithm (i.e., support vector machine) for decision making. The FEM simulation analyzes a scaffolding to calculate strain values for each scaffolding column from randomly generated 1,2 load cases. Load-related strain data form training and testing sets for the machine-learning algorithm that enables the distinguishing of scaffolding conditions such as safe, over-turning, uneven-settlement, and over-loading conditions. In the experimental validation, the developed wireless strain sensing modules perform the real-time strain measurement and the machine-learning algorithm to successfully estimate the status of the scaffolding structure with 97.66% accuracy on average. The proposed method could escalate a monitoring paradigm for temporary structures from a labor-intensive manual inspection to a systematic real-time approach.
    • Download: (1.850Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Data-Driven Monitoring System for Preventing the Collapse of Scaffolding Structures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4248583
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorCho Chunhee;Kim Kyungki;Park JeeWoong;Cho Yong K.
    date accessioned2019-02-26T07:39:55Z
    date available2019-02-26T07:39:55Z
    date issued2018
    identifier other%28ASCE%29CO.1943-7862.0001535.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4248583
    description abstractAs temporary structures, scaffolds have essential roles to hold workers, materials, and equipment throughout construction activities. However, because a safety inspection for scaffolds is primarily visual and labor intensive, the OSHA standards related to scaffolds are frequently violated. Improper management of scaffolds has caused scaffolding collapses that have a potentially detrimental effect and liability on workers’ lives. This paper discusses the significance of scaffolding collapses and explores a method to perform scaffolding monitoring. To establish an integrated method, this research cross-connects various components (e.g., strain data, finite element model (FEM)-based structural analysis, machine learning, and an actual scaffold) in the presented framework. More specifically, this framework for a smart monitoring system is involved with: (1) developing a wireless strain sensing module for data collection, (2) modeling an FEM and learning data for failure mechanisms through FEM to characterize scaffold behaviors under certain loading conditions, and (3) investigating a machine-learning algorithm (i.e., support vector machine) for decision making. The FEM simulation analyzes a scaffolding to calculate strain values for each scaffolding column from randomly generated 1,2 load cases. Load-related strain data form training and testing sets for the machine-learning algorithm that enables the distinguishing of scaffolding conditions such as safe, over-turning, uneven-settlement, and over-loading conditions. In the experimental validation, the developed wireless strain sensing modules perform the real-time strain measurement and the machine-learning algorithm to successfully estimate the status of the scaffolding structure with 97.66% accuracy on average. The proposed method could escalate a monitoring paradigm for temporary structures from a labor-intensive manual inspection to a systematic real-time approach.
    publisherAmerican Society of Civil Engineers
    titleData-Driven Monitoring System for Preventing the Collapse of Scaffolding Structures
    typeJournal Paper
    journal volume144
    journal issue8
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/(ASCE)CO.1943-7862.0001535
    page4018077
    treeJournal of Construction Engineering and Management:;2018:;Volume ( 144 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian