YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improving Workplace Hazard Identification Performance Using Data Mining

    Source: Journal of Construction Engineering and Management:;2018:;Volume ( 144 ):;issue: 008
    Author:
    Wang Xinhao;Huang Xifei;Luo Yun;Pei Jingjing;Xu Ming
    DOI: 10.1061/(ASCE)CO.1943-7862.0001505
    Publisher: American Society of Civil Engineers
    Abstract: Hazard identification, as the first major step of risk management, is a crucial activity for reducing accidents and other related losses. However, recent research has revealed that a large proportion of workplace hazards remain unidentified, and the identification process is also time consuming. To improve workplace hazard identification performance, an associated hazard prediction method is proposed which consists of an equivalence class transformation (Eclat) algorithm, a change mining algorithm, data visualization, and other data mining techniques. Through the data mining of historical hazard information, the method can extract association rules and changes related to an identified hazard and then predict other associated hazard information, including types, probabilities, and change trends, to assist with hazard identification and management. The function of the method is twofold. Firstly, associated hazard information can be predicted to help superintendents enhance the pertinence of identification, and then the problem of incomplete hazard identification can be solved. Secondly, with the help of the data visualization technique, superintendents can intuitively understand the potential relationship between hazards and obtain more valuable information to identify and control hazards early, thus improving efficiency. Case studies of standardized management of Chinese enterprise workplaces are presented. The case studies show that up to 47.37% of the hazards can be predicted, and the efficiency is increased by an average of 31.53%.
    • Download: (1.706Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improving Workplace Hazard Identification Performance Using Data Mining

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4248559
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorWang Xinhao;Huang Xifei;Luo Yun;Pei Jingjing;Xu Ming
    date accessioned2019-02-26T07:39:40Z
    date available2019-02-26T07:39:40Z
    date issued2018
    identifier other%28ASCE%29CO.1943-7862.0001505.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4248559
    description abstractHazard identification, as the first major step of risk management, is a crucial activity for reducing accidents and other related losses. However, recent research has revealed that a large proportion of workplace hazards remain unidentified, and the identification process is also time consuming. To improve workplace hazard identification performance, an associated hazard prediction method is proposed which consists of an equivalence class transformation (Eclat) algorithm, a change mining algorithm, data visualization, and other data mining techniques. Through the data mining of historical hazard information, the method can extract association rules and changes related to an identified hazard and then predict other associated hazard information, including types, probabilities, and change trends, to assist with hazard identification and management. The function of the method is twofold. Firstly, associated hazard information can be predicted to help superintendents enhance the pertinence of identification, and then the problem of incomplete hazard identification can be solved. Secondly, with the help of the data visualization technique, superintendents can intuitively understand the potential relationship between hazards and obtain more valuable information to identify and control hazards early, thus improving efficiency. Case studies of standardized management of Chinese enterprise workplaces are presented. The case studies show that up to 47.37% of the hazards can be predicted, and the efficiency is increased by an average of 31.53%.
    publisherAmerican Society of Civil Engineers
    titleImproving Workplace Hazard Identification Performance Using Data Mining
    typeJournal Paper
    journal volume144
    journal issue8
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/(ASCE)CO.1943-7862.0001505
    page4018068
    treeJournal of Construction Engineering and Management:;2018:;Volume ( 144 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian