YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bridge Deterioration Quantification Protocol Using UAV

    Source: Journal of Bridge Engineering:;2018:;Volume ( 023 ):;issue: 010
    Author:
    Duque Luis;Seo Junwon;Wacker James
    DOI: 10.1061/(ASCE)BE.1943-5592.0001289
    Publisher: American Society of Civil Engineers
    Abstract: This paper focuses on evaluating the effectiveness of an unmanned aerial vehicle (UAV) as a supplementary bridge damage quantification tool. For this study, a glued-laminated timber arch bridge in South Dakota was selected, and an UAV was utilized for the bridge damage quantification. A recommended four-stage UAV-enabled bridge damage quantification protocol involving image quality assessment and image-based damage quantification was developed. A field application using the UAV to measure crack lengths, thicknesses, and rust stain areas of the selected bridge was conducted following the recommended protocol. The image quality parameters, including sharpness and entropy, were used to determine the quality of the UAV-captured images. Pixel- and photogrammetry-based measurements using the high-quality images were obtained to quantify the bridge damage, and the damage was compared to that from actual field measurements. Once the damage information was gathered, the UAV image–based damage level classification was established based on the damage levels defined by current standards. The findings confirmed the accuracy of the recommended protocol, with results within 3.5, 7.9, and 14.9% difference for crack length, thickness, and rust stain area, respectively, when compared with the field measurements.
    • Download: (4.700Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bridge Deterioration Quantification Protocol Using UAV

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4248436
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorDuque Luis;Seo Junwon;Wacker James
    date accessioned2019-02-26T07:38:23Z
    date available2019-02-26T07:38:23Z
    date issued2018
    identifier other%28ASCE%29BE.1943-5592.0001289.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4248436
    description abstractThis paper focuses on evaluating the effectiveness of an unmanned aerial vehicle (UAV) as a supplementary bridge damage quantification tool. For this study, a glued-laminated timber arch bridge in South Dakota was selected, and an UAV was utilized for the bridge damage quantification. A recommended four-stage UAV-enabled bridge damage quantification protocol involving image quality assessment and image-based damage quantification was developed. A field application using the UAV to measure crack lengths, thicknesses, and rust stain areas of the selected bridge was conducted following the recommended protocol. The image quality parameters, including sharpness and entropy, were used to determine the quality of the UAV-captured images. Pixel- and photogrammetry-based measurements using the high-quality images were obtained to quantify the bridge damage, and the damage was compared to that from actual field measurements. Once the damage information was gathered, the UAV image–based damage level classification was established based on the damage levels defined by current standards. The findings confirmed the accuracy of the recommended protocol, with results within 3.5, 7.9, and 14.9% difference for crack length, thickness, and rust stain area, respectively, when compared with the field measurements.
    publisherAmerican Society of Civil Engineers
    titleBridge Deterioration Quantification Protocol Using UAV
    typeJournal Paper
    journal volume23
    journal issue10
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001289
    page4018080
    treeJournal of Bridge Engineering:;2018:;Volume ( 023 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian