YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fatigue Performance of Rib-to-Deck Joints Strengthened with FRP Angles

    Source: Journal of Bridge Engineering:;2018:;Volume ( 023 ):;issue: 009
    Author:
    Liu Jie;Guo Tong;Feng Dongming;Liu Zhongxiang
    DOI: 10.1061/(ASCE)BE.1943-5592.0001286
    Publisher: American Society of Civil Engineers
    Abstract: Rib-to-deck joints of orthotropic steel decks (OSDs) in steel bridges are susceptible to longitudinal fatigue cracking, which often results in considerable repair costs as well as traffic interruption. To mitigate such cracking, a strengthening method using externally bonded fiber-reinforced polymer (FRP) angles was investigated. Seven OSD specimens were tested and subjected to pure bending to evaluate the effectiveness of the strengthening. The influences of different FRP materials, adhesives, and angle dimensions on the fatigue lives of rib-to-deck fatigue details were experimentally studied. It is demonstrated that the proposed method can significantly reduce the hot-spot stress ranges in the vicinity of welded details and elongate their fatigue lives. Ductile adhesive with higher strength and angles with longer legs would help improve the fatigue performance by delaying the occurrence of debonding between angles and OSD specimens. It is also observed that carbon FRP angles are more effective than glass FRP ones, due to their higher elastic modulus. Besides, FRP angles with stiffeners can further increase the fatigue life of the details due to the additional stiffness, if debonding could be avoided or delayed. Finally, numerical analysis validated the beneficial effect of different FRP-based strengthening measures on the stress intensity factors at crack tips. This study provided a reference to the design and application of externally bonded FRP angles in the strengthening of weld details in OSDs.
    • Download: (2.128Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fatigue Performance of Rib-to-Deck Joints Strengthened with FRP Angles

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4248433
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorLiu Jie;Guo Tong;Feng Dongming;Liu Zhongxiang
    date accessioned2019-02-26T07:38:21Z
    date available2019-02-26T07:38:21Z
    date issued2018
    identifier other%28ASCE%29BE.1943-5592.0001286.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4248433
    description abstractRib-to-deck joints of orthotropic steel decks (OSDs) in steel bridges are susceptible to longitudinal fatigue cracking, which often results in considerable repair costs as well as traffic interruption. To mitigate such cracking, a strengthening method using externally bonded fiber-reinforced polymer (FRP) angles was investigated. Seven OSD specimens were tested and subjected to pure bending to evaluate the effectiveness of the strengthening. The influences of different FRP materials, adhesives, and angle dimensions on the fatigue lives of rib-to-deck fatigue details were experimentally studied. It is demonstrated that the proposed method can significantly reduce the hot-spot stress ranges in the vicinity of welded details and elongate their fatigue lives. Ductile adhesive with higher strength and angles with longer legs would help improve the fatigue performance by delaying the occurrence of debonding between angles and OSD specimens. It is also observed that carbon FRP angles are more effective than glass FRP ones, due to their higher elastic modulus. Besides, FRP angles with stiffeners can further increase the fatigue life of the details due to the additional stiffness, if debonding could be avoided or delayed. Finally, numerical analysis validated the beneficial effect of different FRP-based strengthening measures on the stress intensity factors at crack tips. This study provided a reference to the design and application of externally bonded FRP angles in the strengthening of weld details in OSDs.
    publisherAmerican Society of Civil Engineers
    titleFatigue Performance of Rib-to-Deck Joints Strengthened with FRP Angles
    typeJournal Paper
    journal volume23
    journal issue9
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001286
    page4018060
    treeJournal of Bridge Engineering:;2018:;Volume ( 023 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian