YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanical Behavior of Steel–HFRC Composite Girders

    Source: Journal of Bridge Engineering:;2018:;Volume ( 023 ):;issue: 010
    Author:
    Yu Liang He;Yi Qiang Xiang;Li Si Liu;Ying Yang
    DOI: 10.1061/(ASCE)BE.1943-5592.0001275
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents the experimental and analytical results of a new composite girder that consists of a steel girder and hybrid fiber–reinforced concrete (HFRC) slab. First, six push-out tests were performed, and the test results were used to verify the interface behaviors of two composite girders. Then, the composite behavior between the steel girder and HFRC slab was investigated under sagging moment. It was found that the composite girder with HFRC slab exhibited a much greater ductility and a slightly smaller ultimate moment capacity, and the probability of cracking was also significantly reduced compared with the normal concrete (NC) slab. Finally, equations introducing the reinforcement indexes to determine the capacity, degree of shear connector, and effective moment of inertia of the steel–HFRC composite girders with partial interaction were proposed. It was found that the analytical results of the equations had a fairly good agreement with experimental results.
    • Download: (5.226Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanical Behavior of Steel–HFRC Composite Girders

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4248422
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorYu Liang He;Yi Qiang Xiang;Li Si Liu;Ying Yang
    date accessioned2019-02-26T07:38:15Z
    date available2019-02-26T07:38:15Z
    date issued2018
    identifier other%28ASCE%29BE.1943-5592.0001275.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4248422
    description abstractThis paper presents the experimental and analytical results of a new composite girder that consists of a steel girder and hybrid fiber–reinforced concrete (HFRC) slab. First, six push-out tests were performed, and the test results were used to verify the interface behaviors of two composite girders. Then, the composite behavior between the steel girder and HFRC slab was investigated under sagging moment. It was found that the composite girder with HFRC slab exhibited a much greater ductility and a slightly smaller ultimate moment capacity, and the probability of cracking was also significantly reduced compared with the normal concrete (NC) slab. Finally, equations introducing the reinforcement indexes to determine the capacity, degree of shear connector, and effective moment of inertia of the steel–HFRC composite girders with partial interaction were proposed. It was found that the analytical results of the equations had a fairly good agreement with experimental results.
    publisherAmerican Society of Civil Engineers
    titleMechanical Behavior of Steel–HFRC Composite Girders
    typeJournal Paper
    journal volume23
    journal issue10
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001275
    page4018070
    treeJournal of Bridge Engineering:;2018:;Volume ( 023 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian