YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    General Framework for Modeling Multifunctional Metamaterial Beam Based on a Derived One-Dimensional Piezoelectric Composite Finite Element

    Source: Journal of Aerospace Engineering:;2018:;Volume ( 031 ):;issue: 006
    Author:
    Hu Guobiao;Tang Lihua;Das Raj
    DOI: 10.1061/(ASCE)AS.1943-5525.0000920
    Publisher: American Society of Civil Engineers
    Abstract: Phononic crystals and metamaterials have been widely investigated over the last decade. In recent years, by integration with piezoelectric transducers, phononic/metamaterial-based piezoelectric energy harvesters (PEHs) have gained increasing research interest for achieving multifunctionalities. This paper proposes a general framework for modelling phononic/metamaterial beams bonded with piezoelectric transducers based on a one-dimensional piezoelectric composite finite element derived using the generalized Hamilton’s principle. A method for calculating band structures of infinitely long models of phononic/metamaterial beams that can carry piezoelectric transducers is then developed. This method is demonstrated via two case studies. The first case study investigates a metamaterial beam without piezoelectric coverage, and the proposed method is verified by the transfer matrix method (TMM). Compared with the TMM, the proposed method provides a dispersion relationship in a simpler form and thus demonstrates higher computational efficiency. The second case study investigates a metamaterial beam with periodic piezoelectric coverage. The proposed method takes into consideration the piezoelectric effect. Band structures of such a piezoelectric metamaterial beam under short-circuit and open-circuit conditions are evaluated. Subsequently, corresponding finitely long models of the two case studies are analyzed. The transmittances and open-circuit voltage responses of the piezoelectric transducers are then calculated. The predicted band gaps from transmittances match well with those from band structures. In addition, the transmittances and open-circuit voltage responses of piezoelectric transducers predicted based on the proposed model are verified against the finite-element solution produced by the ANSYS FE program.
    • Download: (3.193Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      General Framework for Modeling Multifunctional Metamaterial Beam Based on a Derived One-Dimensional Piezoelectric Composite Finite Element

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4248370
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorHu Guobiao;Tang Lihua;Das Raj
    date accessioned2019-02-26T07:37:43Z
    date available2019-02-26T07:37:43Z
    date issued2018
    identifier other%28ASCE%29AS.1943-5525.0000920.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4248370
    description abstractPhononic crystals and metamaterials have been widely investigated over the last decade. In recent years, by integration with piezoelectric transducers, phononic/metamaterial-based piezoelectric energy harvesters (PEHs) have gained increasing research interest for achieving multifunctionalities. This paper proposes a general framework for modelling phononic/metamaterial beams bonded with piezoelectric transducers based on a one-dimensional piezoelectric composite finite element derived using the generalized Hamilton’s principle. A method for calculating band structures of infinitely long models of phononic/metamaterial beams that can carry piezoelectric transducers is then developed. This method is demonstrated via two case studies. The first case study investigates a metamaterial beam without piezoelectric coverage, and the proposed method is verified by the transfer matrix method (TMM). Compared with the TMM, the proposed method provides a dispersion relationship in a simpler form and thus demonstrates higher computational efficiency. The second case study investigates a metamaterial beam with periodic piezoelectric coverage. The proposed method takes into consideration the piezoelectric effect. Band structures of such a piezoelectric metamaterial beam under short-circuit and open-circuit conditions are evaluated. Subsequently, corresponding finitely long models of the two case studies are analyzed. The transmittances and open-circuit voltage responses of the piezoelectric transducers are then calculated. The predicted band gaps from transmittances match well with those from band structures. In addition, the transmittances and open-circuit voltage responses of piezoelectric transducers predicted based on the proposed model are verified against the finite-element solution produced by the ANSYS FE program.
    publisherAmerican Society of Civil Engineers
    titleGeneral Framework for Modeling Multifunctional Metamaterial Beam Based on a Derived One-Dimensional Piezoelectric Composite Finite Element
    typeJournal Paper
    journal volume31
    journal issue6
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0000920
    page4018088
    treeJournal of Aerospace Engineering:;2018:;Volume ( 031 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian