YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fault-Tolerant Attitude Determination and Control System Design of Nanosatellite 2

    Source: Journal of Aerospace Engineering:;2018:;Volume ( 031 ):;issue: 006
    Author:
    Shi Shuai;Yuan Binwen;Zhao Kaichun;You Zheng;Zhang Gaofei
    DOI: 10.1061/(ASCE)AS.1943-5525.0000912
    Publisher: American Society of Civil Engineers
    Abstract: Nanosatellite 2 (NS-2) is a science and technology experimental nanosatellite developed by Tsinghua University. Since it was launched, NS-2 has operated properly and has been used as a low-cost, rapid-response satellite platform for on-orbit experiments with microelectromechanical system devices. The design, mathematical model, numerical simulation, and on-orbit telemetry data analysis of the NS-2 attitude determination and control system (ADCS) are presented in this paper. A bias momentum wheel and three-axis magnetic torquers were used and an actuator fault-tolerance control algorithm was proposed. Flight data confirmed that NS-2 ADCS achieved a three-axis stabilized control with an accuracy of 2.5° and an angular rate within .5°/s in each axis, which met the mission requirements. In addition, single event effects were detected during the NS-2 flight, which led to attitude control failures. A simple and practical fault processing method was uploaded to NS-2 ADCS by the ground station to solve this problem. On-orbit operation validated the efficacy of this method. This paper provided reference for the study and design of nanosatellites.
    • Download: (2.698Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fault-Tolerant Attitude Determination and Control System Design of Nanosatellite 2

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4248362
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorShi Shuai;Yuan Binwen;Zhao Kaichun;You Zheng;Zhang Gaofei
    date accessioned2019-02-26T07:37:40Z
    date available2019-02-26T07:37:40Z
    date issued2018
    identifier other%28ASCE%29AS.1943-5525.0000912.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4248362
    description abstractNanosatellite 2 (NS-2) is a science and technology experimental nanosatellite developed by Tsinghua University. Since it was launched, NS-2 has operated properly and has been used as a low-cost, rapid-response satellite platform for on-orbit experiments with microelectromechanical system devices. The design, mathematical model, numerical simulation, and on-orbit telemetry data analysis of the NS-2 attitude determination and control system (ADCS) are presented in this paper. A bias momentum wheel and three-axis magnetic torquers were used and an actuator fault-tolerance control algorithm was proposed. Flight data confirmed that NS-2 ADCS achieved a three-axis stabilized control with an accuracy of 2.5° and an angular rate within .5°/s in each axis, which met the mission requirements. In addition, single event effects were detected during the NS-2 flight, which led to attitude control failures. A simple and practical fault processing method was uploaded to NS-2 ADCS by the ground station to solve this problem. On-orbit operation validated the efficacy of this method. This paper provided reference for the study and design of nanosatellites.
    publisherAmerican Society of Civil Engineers
    titleFault-Tolerant Attitude Determination and Control System Design of Nanosatellite 2
    typeJournal Paper
    journal volume31
    journal issue6
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0000912
    page4018087
    treeJournal of Aerospace Engineering:;2018:;Volume ( 031 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian