YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    New Microscopic Dynamic Model for Bicyclists’ Riding Strategies

    Source: Journal of Transportation Engineering, Part A: Systems:;2018:;Volume ( 144 ):;issue: 008
    Author:
    Liang Xiao;Xie Meiquan;Jia Xudong
    DOI: 10.1061/JTEPBS.0000148
    Publisher: American Society of Civil Engineers
    Abstract: As more attention is focused on bicycles as a mode of transportation, there is a strong need to understand microscopic behaviors of bicyclists within urban traffic systems. To respond to these needs, a new approach to simulate bicyclists’ riding behaviors on bike paths has been developed. This approach uses the concept of reactive and perceptive ranges to depict the behaviors of bicycle flows. A series of riding strategies widely adopted by bike riders is proposed. Using these strategies or rules, this study applies a continuous psychological-physiological force (PPF) model to simulate the bicycle riding patterns and the reactive and perceptive interactions of bicyclists. A set of controlled experiments and field observations is carried out to calibrate the simulated interactions derived from the PPF model. After validation, the PPF model is used further to produce simulated trajectories of bicyclists, and a fundamental diagram is developed. The fundamental diagram is consistent with that in field investigations and previous research reports. A sensitivity analysis is also carried out based on the simulated trajectories of bicyclists (going through a series of bike paths with different widths). The analysis demonstrates that the width of a bike path directly impacts the capacity of the path. With the increasing width of a bike path, the capacity (per unit width of the bike path) decreases. This is a result of the psychological and physiological interactions of bicyclists in response to bike paths with different widths. This result provides a good insight for the design of bike paths in the future.
    • Download: (2.320Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      New Microscopic Dynamic Model for Bicyclists’ Riding Strategies

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4248338
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorLiang Xiao;Xie Meiquan;Jia Xudong
    date accessioned2019-02-26T07:37:26Z
    date available2019-02-26T07:37:26Z
    date issued2018
    identifier otherJTEPBS.0000148.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4248338
    description abstractAs more attention is focused on bicycles as a mode of transportation, there is a strong need to understand microscopic behaviors of bicyclists within urban traffic systems. To respond to these needs, a new approach to simulate bicyclists’ riding behaviors on bike paths has been developed. This approach uses the concept of reactive and perceptive ranges to depict the behaviors of bicycle flows. A series of riding strategies widely adopted by bike riders is proposed. Using these strategies or rules, this study applies a continuous psychological-physiological force (PPF) model to simulate the bicycle riding patterns and the reactive and perceptive interactions of bicyclists. A set of controlled experiments and field observations is carried out to calibrate the simulated interactions derived from the PPF model. After validation, the PPF model is used further to produce simulated trajectories of bicyclists, and a fundamental diagram is developed. The fundamental diagram is consistent with that in field investigations and previous research reports. A sensitivity analysis is also carried out based on the simulated trajectories of bicyclists (going through a series of bike paths with different widths). The analysis demonstrates that the width of a bike path directly impacts the capacity of the path. With the increasing width of a bike path, the capacity (per unit width of the bike path) decreases. This is a result of the psychological and physiological interactions of bicyclists in response to bike paths with different widths. This result provides a good insight for the design of bike paths in the future.
    publisherAmerican Society of Civil Engineers
    titleNew Microscopic Dynamic Model for Bicyclists’ Riding Strategies
    typeJournal Paper
    journal volume144
    journal issue8
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/JTEPBS.0000148
    page4018034
    treeJournal of Transportation Engineering, Part A: Systems:;2018:;Volume ( 144 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian