YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Simulation of Aerostatic Force Coefficients of Bridge Decks Using Continuous Torsional Motion Technique

    Source: Journal of Aerospace Engineering:;2018:;Volume ( 031 ):;issue: 005
    Author:
    Ying Xuyong;Xu Fuyou;Zhang Mingjie;Zhang Zhe
    DOI: 10.1061/(ASCE)AS.1943-5525.0000896
    Publisher: American Society of Civil Engineers
    Abstract: A low-frequency continuous torsional motion technique (CTMT) is presented to efficiently extract the aerostatic force coefficients (AFCs) of bridge decks. In contrast to the conventional numerical simulations at a series of discrete angles of attack, the CTMT can conveniently obtain the continuous angle-varying AFCs. Thus, the numerical modeling labor efforts and computation time are significantly reduced. The CTMT accuracy is validated by calculating the AFCs of one flat plate and comparing it to the theoretical solutions. The AFCs of two representative deck cross sections (both streamlined and bluff) are numerically calculated and compared to those of testing results, by which the applicability and limitation of this newly developed method are examined. Due to its convenience in obtaining more ample information without losing accuracy compared to the traditional discrete technique, the CTMT is strongly recommended for future numerical simulations of AFCs of bridge decks.
    • Download: (744.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Simulation of Aerostatic Force Coefficients of Bridge Decks Using Continuous Torsional Motion Technique

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4248181
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorYing Xuyong;Xu Fuyou;Zhang Mingjie;Zhang Zhe
    date accessioned2019-02-26T07:36:07Z
    date available2019-02-26T07:36:07Z
    date issued2018
    identifier other%28ASCE%29AS.1943-5525.0000896.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4248181
    description abstractA low-frequency continuous torsional motion technique (CTMT) is presented to efficiently extract the aerostatic force coefficients (AFCs) of bridge decks. In contrast to the conventional numerical simulations at a series of discrete angles of attack, the CTMT can conveniently obtain the continuous angle-varying AFCs. Thus, the numerical modeling labor efforts and computation time are significantly reduced. The CTMT accuracy is validated by calculating the AFCs of one flat plate and comparing it to the theoretical solutions. The AFCs of two representative deck cross sections (both streamlined and bluff) are numerically calculated and compared to those of testing results, by which the applicability and limitation of this newly developed method are examined. Due to its convenience in obtaining more ample information without losing accuracy compared to the traditional discrete technique, the CTMT is strongly recommended for future numerical simulations of AFCs of bridge decks.
    publisherAmerican Society of Civil Engineers
    titleNumerical Simulation of Aerostatic Force Coefficients of Bridge Decks Using Continuous Torsional Motion Technique
    typeJournal Paper
    journal volume31
    journal issue5
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0000896
    page4018065
    treeJournal of Aerospace Engineering:;2018:;Volume ( 031 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian