YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hierarchical Decision-Modeling Framework to Meet Environmental Objectives in Biofuel Development

    Source: Journal of Water Resources Planning and Management:;2018:;Volume ( 144 ):;issue: 007
    Author:
    Shafiee-Jood Majid;Housh Mashor;Cai Ximing
    DOI: 10.1061/(ASCE)WR.1943-5452.0000950
    Publisher: American Society of Civil Engineers
    Abstract: Biofuel development to comply with the Renewable Fuel Standard (RFS) would alter conventional crop patterns in agricultural watersheds. As a result, the hydrologic response of the watersheds will exhibit different and often opposing effects on agrohydrological system variables such as riverine nitrate-N load and streamflow. Conventional modeling approaches treat those externalities as regulatory constraints, often fail to consider the hierarchical nature of the decision-making process, and end with unrealistic solutions. This study therefore proposes an alternative decision-modeling framework for biofuel development to optimize a water-quality objective under different levels of streamflow requirement in the watershed. A bilevel programming model is established to mimic the hierarchical decision-making process in environmental regulation. The model is applied to the Sangamon River basin, a typical agricultural watershed in central Illinois, to determine the optimal locations and type of ethanol biorefineries as policy instruments. The results show that the proposed instruments can effectively guide the decisions in biofuel development to meet the environmental objectives in the watershed, although adopting the proposed framework yields a lower profit than the conventional models, which is the price of a more realistic solution to the hierarchical decision problem. The results also highlight the importance of spatial heterogeneity and identifying an appropriate spatial scale to design effective environmental policies in biofuel development.
    • Download: (3.145Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hierarchical Decision-Modeling Framework to Meet Environmental Objectives in Biofuel Development

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4248141
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorShafiee-Jood Majid;Housh Mashor;Cai Ximing
    date accessioned2019-02-26T07:35:47Z
    date available2019-02-26T07:35:47Z
    date issued2018
    identifier other%28ASCE%29WR.1943-5452.0000950.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4248141
    description abstractBiofuel development to comply with the Renewable Fuel Standard (RFS) would alter conventional crop patterns in agricultural watersheds. As a result, the hydrologic response of the watersheds will exhibit different and often opposing effects on agrohydrological system variables such as riverine nitrate-N load and streamflow. Conventional modeling approaches treat those externalities as regulatory constraints, often fail to consider the hierarchical nature of the decision-making process, and end with unrealistic solutions. This study therefore proposes an alternative decision-modeling framework for biofuel development to optimize a water-quality objective under different levels of streamflow requirement in the watershed. A bilevel programming model is established to mimic the hierarchical decision-making process in environmental regulation. The model is applied to the Sangamon River basin, a typical agricultural watershed in central Illinois, to determine the optimal locations and type of ethanol biorefineries as policy instruments. The results show that the proposed instruments can effectively guide the decisions in biofuel development to meet the environmental objectives in the watershed, although adopting the proposed framework yields a lower profit than the conventional models, which is the price of a more realistic solution to the hierarchical decision problem. The results also highlight the importance of spatial heterogeneity and identifying an appropriate spatial scale to design effective environmental policies in biofuel development.
    publisherAmerican Society of Civil Engineers
    titleHierarchical Decision-Modeling Framework to Meet Environmental Objectives in Biofuel Development
    typeJournal Paper
    journal volume144
    journal issue7
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0000950
    page4018030
    treeJournal of Water Resources Planning and Management:;2018:;Volume ( 144 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian