YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental and Numerical Assessment of Corbels Designed Based on Strut-and-Tie Provisions

    Source: Journal of Structural Engineering:;2018:;Volume ( 144 ):;issue: 009
    Author:
    Khosravikia Farid;Kim Hyun su;Yi Yousun;Wilson Heather;Yousefpour Hossein;Hrynyk Trevor;Bayrak Oguzhan
    DOI: 10.1061/(ASCE)ST.1943-541X.0002137
    Publisher: American Society of Civil Engineers
    Abstract: Reinforced concrete (RC) corbels are short cantilever members that are used to transfer eccentric loads into columns or walls. Due to discontinuity in load and geometry, RC corbels cannot be adequately designed using methods that are based on beam theory. AASHTO LRFD Bridge Design Specifications permit the use of the strut-and-tie method (STM) for designing corbels. However, these specifications also require that the reinforcement details satisfy the requirements of an empirical design method, which prevents the efficient use of STM for such members. Moreover, the crack-control reinforcement requirements in the current STM provisions of AASHTO LRFD have been developed based on studies on deep beams, and the suitability of these provisions for corbels has not been investigated. This paper evaluates the behavior of reinforced concrete corbels designed according to the STM provisions of AASHTO LRFD. To do so, first, the performances of three full-scale corbel specimens designed according to STM were experimentally evaluated. Then, a numerical study using experimentally validated nonlinear finite-element models was conducted to investigate the crack-control reinforcement requirements for RC corbels. The results from the experimental study indicate that the STM provisions of the AASHTO LRFD provide conservative estimates of the load-carrying capacity of RC corbels; however, examination of the smeared node near the corbel-column interface, a check not currently required in AASHTO LRFD, is highly recommended. The results from the numerical study suggest that a reduction in the amount of secondary reinforcement currently required by AASHTO LRFD may be feasible, depending on the reinforcement layout used.
    • Download: (2.020Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental and Numerical Assessment of Corbels Designed Based on Strut-and-Tie Provisions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4248016
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorKhosravikia Farid;Kim Hyun su;Yi Yousun;Wilson Heather;Yousefpour Hossein;Hrynyk Trevor;Bayrak Oguzhan
    date accessioned2019-02-26T07:34:36Z
    date available2019-02-26T07:34:36Z
    date issued2018
    identifier other%28ASCE%29ST.1943-541X.0002137.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4248016
    description abstractReinforced concrete (RC) corbels are short cantilever members that are used to transfer eccentric loads into columns or walls. Due to discontinuity in load and geometry, RC corbels cannot be adequately designed using methods that are based on beam theory. AASHTO LRFD Bridge Design Specifications permit the use of the strut-and-tie method (STM) for designing corbels. However, these specifications also require that the reinforcement details satisfy the requirements of an empirical design method, which prevents the efficient use of STM for such members. Moreover, the crack-control reinforcement requirements in the current STM provisions of AASHTO LRFD have been developed based on studies on deep beams, and the suitability of these provisions for corbels has not been investigated. This paper evaluates the behavior of reinforced concrete corbels designed according to the STM provisions of AASHTO LRFD. To do so, first, the performances of three full-scale corbel specimens designed according to STM were experimentally evaluated. Then, a numerical study using experimentally validated nonlinear finite-element models was conducted to investigate the crack-control reinforcement requirements for RC corbels. The results from the experimental study indicate that the STM provisions of the AASHTO LRFD provide conservative estimates of the load-carrying capacity of RC corbels; however, examination of the smeared node near the corbel-column interface, a check not currently required in AASHTO LRFD, is highly recommended. The results from the numerical study suggest that a reduction in the amount of secondary reinforcement currently required by AASHTO LRFD may be feasible, depending on the reinforcement layout used.
    publisherAmerican Society of Civil Engineers
    titleExperimental and Numerical Assessment of Corbels Designed Based on Strut-and-Tie Provisions
    typeJournal Paper
    journal volume144
    journal issue9
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002137
    page4018138
    treeJournal of Structural Engineering:;2018:;Volume ( 144 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian