YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Large-Scale Experimental Study of Ring Shaped–Steel Plate Shear Walls

    Source: Journal of Structural Engineering:;2018:;Volume ( 144 ):;issue: 008
    Author:
    Phillips Adam R.;Eatherton Matthew R.
    DOI: 10.1061/(ASCE)ST.1943-541X.0002119
    Publisher: American Society of Civil Engineers
    Abstract: The ring shaped–steel plate shear wall (RS-SPSW) is a new lateral load resisting system that offers improved seismic energy dissipation and stiffness over conventional steel plate shear wall systems. Thicker web plates with specially designed cut-outs leaving connected ring shapes make the RS-SPSW less susceptible to buckling. The RS-SPSW concept was investigated through large-scale experiments on five, two-thirds scale specimens. The specimens were designed with varying strength to represent demands at the first and fifth floors of a 6-story building and varying ring geometries to capture different limit states such as plastic yielding of the ring, shear buckling of the panel, and lateral torsional buckling of the rings. The large-scale experiments validated the ability of the RS-SPSW concept to delay buckling, which resulted in fuller hysteretic behavior and 7% more energy dissipation per cycle at 2% story drift than a conventional steel plate shear wall with the same strength. An equation for plastic shear strength was developed and shown to accurately predict the yield strength of RS-SPSWs specimens with 1.4% error on average. Lastly, the experiments revealed a mode of behavior wherein inelastic deformations can concentrate in outer rows of rings leading to increased deformation demands in these rows. An idealized model of the deformation mode is presented along with equations to predict the maximum deformation demand for any ring in the panel.
    • Download: (2.215Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Large-Scale Experimental Study of Ring Shaped–Steel Plate Shear Walls

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4247994
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorPhillips Adam R.;Eatherton Matthew R.
    date accessioned2019-02-26T07:34:25Z
    date available2019-02-26T07:34:25Z
    date issued2018
    identifier other%28ASCE%29ST.1943-541X.0002119.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4247994
    description abstractThe ring shaped–steel plate shear wall (RS-SPSW) is a new lateral load resisting system that offers improved seismic energy dissipation and stiffness over conventional steel plate shear wall systems. Thicker web plates with specially designed cut-outs leaving connected ring shapes make the RS-SPSW less susceptible to buckling. The RS-SPSW concept was investigated through large-scale experiments on five, two-thirds scale specimens. The specimens were designed with varying strength to represent demands at the first and fifth floors of a 6-story building and varying ring geometries to capture different limit states such as plastic yielding of the ring, shear buckling of the panel, and lateral torsional buckling of the rings. The large-scale experiments validated the ability of the RS-SPSW concept to delay buckling, which resulted in fuller hysteretic behavior and 7% more energy dissipation per cycle at 2% story drift than a conventional steel plate shear wall with the same strength. An equation for plastic shear strength was developed and shown to accurately predict the yield strength of RS-SPSWs specimens with 1.4% error on average. Lastly, the experiments revealed a mode of behavior wherein inelastic deformations can concentrate in outer rows of rings leading to increased deformation demands in these rows. An idealized model of the deformation mode is presented along with equations to predict the maximum deformation demand for any ring in the panel.
    publisherAmerican Society of Civil Engineers
    titleLarge-Scale Experimental Study of Ring Shaped–Steel Plate Shear Walls
    typeJournal Paper
    journal volume144
    journal issue8
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002119
    page4018106
    treeJournal of Structural Engineering:;2018:;Volume ( 144 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian