YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Modeling of Wood-Frame Shear Wall Systems for Performance-Based Earthquake Engineering: Recommendations for the ASCE 41 Standard

    Source: Journal of Structural Engineering:;2018:;Volume ( 144 ):;issue: 008
    Author:
    Koliou Maria;van de Lindt John W.;Hamburger Ronald O.
    DOI: 10.1061/(ASCE)ST.1943-541X.0002083
    Publisher: American Society of Civil Engineers
    Abstract: Wood shear wall systems are the primary elements of seismic force-resisting system (SFRS) in virtually all light-frame wood buildings. Wood-frame buildings are unique because their nonstructural wall finishes, such as gypsum wallboard and stucco, provide significant strength and stiffness relative to that of the intended SFRS. Given the fact that nonstructural wall finishes can consist of multiple layered materials, it is essential to understand and characterize their behavior. The development of accurate and robust numerical models to capture the inelastic behavior of individual shear wall systems and buildings comprised of these wall systems is a critical step when performing nonlinear analyses for either design, evaluation, or upgrade of existing buildings using standards such as ASCE 41-13 [(ASCE 213). ASCE 41-13: Seismic evaluation and retrofit of existing buildings]. In general, existing modeling approaches do not account for the implementation of residual strength and displacement, which have been observed for light-frame wood buildings during shake-table tests. Furthermore, nonlinear representation of elements in the ASCE 41 standard considers only cyclic envelopes to define the nonlinear response of wood shear wall systems and not full hysteretic properties. To address these challenges, this study was divided into three main parts. The first part focused on the development of an excessive synthesis of wall assembly tests incorporating different wood sheathing materials and material combinations, and the evaluation of their force-displacement response. The second part introduced a new envelope curve proposed for modeling wood-frame wall systems with the parameters of this curve identified for the different material combinations included in the synthesis of Step 1. Finally, the proposed backbone curve was implemented in a case study of a multifamily wood frame building subjected to seismic excitation. Incremental dynamic analyses were conducted considering both the proposed envelope curve and the ASCE 41 modeling recommendations, and the response of the building structure was evaluated for three different performance levels (immediate occupancy, life safety, and collapse prevention) through fragility analysis. The main objective of this study was to introduce a beneficial wall-system level modeling tool for nonlinear analysis of light-frame wood buildings as specified in codes and standards in the United States.
    • Download: (1.887Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Modeling of Wood-Frame Shear Wall Systems for Performance-Based Earthquake Engineering: Recommendations for the ASCE 41 Standard

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4247955
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorKoliou Maria;van de Lindt John W.;Hamburger Ronald O.
    date accessioned2019-02-26T07:34:06Z
    date available2019-02-26T07:34:06Z
    date issued2018
    identifier other%28ASCE%29ST.1943-541X.0002083.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4247955
    description abstractWood shear wall systems are the primary elements of seismic force-resisting system (SFRS) in virtually all light-frame wood buildings. Wood-frame buildings are unique because their nonstructural wall finishes, such as gypsum wallboard and stucco, provide significant strength and stiffness relative to that of the intended SFRS. Given the fact that nonstructural wall finishes can consist of multiple layered materials, it is essential to understand and characterize their behavior. The development of accurate and robust numerical models to capture the inelastic behavior of individual shear wall systems and buildings comprised of these wall systems is a critical step when performing nonlinear analyses for either design, evaluation, or upgrade of existing buildings using standards such as ASCE 41-13 [(ASCE 213). ASCE 41-13: Seismic evaluation and retrofit of existing buildings]. In general, existing modeling approaches do not account for the implementation of residual strength and displacement, which have been observed for light-frame wood buildings during shake-table tests. Furthermore, nonlinear representation of elements in the ASCE 41 standard considers only cyclic envelopes to define the nonlinear response of wood shear wall systems and not full hysteretic properties. To address these challenges, this study was divided into three main parts. The first part focused on the development of an excessive synthesis of wall assembly tests incorporating different wood sheathing materials and material combinations, and the evaluation of their force-displacement response. The second part introduced a new envelope curve proposed for modeling wood-frame wall systems with the parameters of this curve identified for the different material combinations included in the synthesis of Step 1. Finally, the proposed backbone curve was implemented in a case study of a multifamily wood frame building subjected to seismic excitation. Incremental dynamic analyses were conducted considering both the proposed envelope curve and the ASCE 41 modeling recommendations, and the response of the building structure was evaluated for three different performance levels (immediate occupancy, life safety, and collapse prevention) through fragility analysis. The main objective of this study was to introduce a beneficial wall-system level modeling tool for nonlinear analysis of light-frame wood buildings as specified in codes and standards in the United States.
    publisherAmerican Society of Civil Engineers
    titleNonlinear Modeling of Wood-Frame Shear Wall Systems for Performance-Based Earthquake Engineering: Recommendations for the ASCE 41 Standard
    typeJournal Paper
    journal volume144
    journal issue8
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002083
    page4018095
    treeJournal of Structural Engineering:;2018:;Volume ( 144 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian