YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Natural Hazards Review
    • View Item
    •   YE&T Library
    • ASCE
    • Natural Hazards Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mitigation Strategies to Protect Petrochemical Infrastructure and Nearby Communities during Storm Surge

    Source: Natural Hazards Review:;2018:;Volume ( 019 ):;issue: 004
    Author:
    Bernier Carl;Kameshwar Sabarethinam;Elliott James R.;Padgett Jamie E.;Bedient Philip B.
    DOI: 10.1061/(ASCE)NH.1527-6996.0000309
    Publisher: American Society of Civil Engineers
    Abstract: This paper explores engineering- and social science-based strategies to mitigate risks posed by aboveground storage tanks (ASTs) during storm events. The Houston Ship Channel (HSC) is used as a case study to illustrate the application of an integrated model of built-human-natural systems and evaluate the viability of alternative risk mitigation strategies for protecting petrochemical infrastructure and nearby communities subjected to storm surge events. First, a model that couples storm surge exposure, fragility modeling, and social vulnerability of communities is used to quantify the effectiveness and economic viability of engineering-based measures to reduce spill risks, such as filling ASTs with liquid, anchoring them to the ground, changing their stiffness, or protecting them with dikes. The results indicate that no single measure is optimal and that combinations of measures could be more suitable. Thus, an optimization approach and a heuristic approach are proposed to select and combine measures considering structural and social vulnerability. Both approaches prove to be effective in reducing storm-induced spills to a given target while minimizing costs; however, they do not improve the resilience of residents in the HSC. Thus, through social science assessment of communities at risk, additional measures are identified, including improved risk communication and evacuation planning, simplified governance structures, moving from equal treatment approaches to equitable treatment approaches, and creating institutions that will empower and benefit local residents. Successful mitigation plans should cut across both engineering and social science approaches.
    • Download: (2.425Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mitigation Strategies to Protect Petrochemical Infrastructure and Nearby Communities during Storm Surge

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4247879
    Collections
    • Natural Hazards Review

    Show full item record

    contributor authorBernier Carl;Kameshwar Sabarethinam;Elliott James R.;Padgett Jamie E.;Bedient Philip B.
    date accessioned2019-02-26T07:33:32Z
    date available2019-02-26T07:33:32Z
    date issued2018
    identifier other%28ASCE%29NH.1527-6996.0000309.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4247879
    description abstractThis paper explores engineering- and social science-based strategies to mitigate risks posed by aboveground storage tanks (ASTs) during storm events. The Houston Ship Channel (HSC) is used as a case study to illustrate the application of an integrated model of built-human-natural systems and evaluate the viability of alternative risk mitigation strategies for protecting petrochemical infrastructure and nearby communities subjected to storm surge events. First, a model that couples storm surge exposure, fragility modeling, and social vulnerability of communities is used to quantify the effectiveness and economic viability of engineering-based measures to reduce spill risks, such as filling ASTs with liquid, anchoring them to the ground, changing their stiffness, or protecting them with dikes. The results indicate that no single measure is optimal and that combinations of measures could be more suitable. Thus, an optimization approach and a heuristic approach are proposed to select and combine measures considering structural and social vulnerability. Both approaches prove to be effective in reducing storm-induced spills to a given target while minimizing costs; however, they do not improve the resilience of residents in the HSC. Thus, through social science assessment of communities at risk, additional measures are identified, including improved risk communication and evacuation planning, simplified governance structures, moving from equal treatment approaches to equitable treatment approaches, and creating institutions that will empower and benefit local residents. Successful mitigation plans should cut across both engineering and social science approaches.
    publisherAmerican Society of Civil Engineers
    titleMitigation Strategies to Protect Petrochemical Infrastructure and Nearby Communities during Storm Surge
    typeJournal Paper
    journal volume19
    journal issue4
    journal titleNatural Hazards Review
    identifier doi10.1061/(ASCE)NH.1527-6996.0000309
    page4018019
    treeNatural Hazards Review:;2018:;Volume ( 019 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian