YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Pyrogenic Silica and Nanosilica on Portland Cement Matrices

    Source: Journal of Materials in Civil Engineering:;2018:;Volume ( 030 ):;issue: 010
    Author:
    Tobón Jorge I.;Mendoza Reales Oscar;Restrepo Oscar Jaime;Borrachero María Victoria;Payá Jordi
    DOI: 10.1061/(ASCE)MT.1943-5533.0002482
    Publisher: American Society of Civil Engineers
    Abstract: In this work, the effect of pyrogenic silica and nanosilica on the properties of portland cement matrices is compared. Two chemically and mineralogically similar mineral additions (amorphous silica) with different particle size and specific surface area were used to prepare pastes and mortars with different solids substitutions of cement by silica. These samples were used to measure water and superplasticizer demand, setting time, hydration kinetics, water absorption by capillary suction, and compressive strength. It was found that specific surface area, rather than particle size, played a crucial role in the amount of water and superplasticizer necessary to obtain a desired workability in pastes and mortars. Such water and superplasticizer demands had a delaying effect on the setting time and hydration kinetics of pastes. Nevertheless, compressive strength results at different curing ages of mortars were found to have a direct correlation with the porous structure of the matrix, rather than with the specific surface area of the silica particles. It was concluded that regardless of its higher specific surface area and greater effect on the fresh state properties of pastes, pyrogenic silica was less efficient than nanosilica to increase the compressive strength of mortars, being considered a less efficient pozzolanic material.
    • Download: (1.799Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Pyrogenic Silica and Nanosilica on Portland Cement Matrices

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4247830
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorTobón Jorge I.;Mendoza Reales Oscar;Restrepo Oscar Jaime;Borrachero María Victoria;Payá Jordi
    date accessioned2019-02-26T07:33:10Z
    date available2019-02-26T07:33:10Z
    date issued2018
    identifier other%28ASCE%29MT.1943-5533.0002482.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4247830
    description abstractIn this work, the effect of pyrogenic silica and nanosilica on the properties of portland cement matrices is compared. Two chemically and mineralogically similar mineral additions (amorphous silica) with different particle size and specific surface area were used to prepare pastes and mortars with different solids substitutions of cement by silica. These samples were used to measure water and superplasticizer demand, setting time, hydration kinetics, water absorption by capillary suction, and compressive strength. It was found that specific surface area, rather than particle size, played a crucial role in the amount of water and superplasticizer necessary to obtain a desired workability in pastes and mortars. Such water and superplasticizer demands had a delaying effect on the setting time and hydration kinetics of pastes. Nevertheless, compressive strength results at different curing ages of mortars were found to have a direct correlation with the porous structure of the matrix, rather than with the specific surface area of the silica particles. It was concluded that regardless of its higher specific surface area and greater effect on the fresh state properties of pastes, pyrogenic silica was less efficient than nanosilica to increase the compressive strength of mortars, being considered a less efficient pozzolanic material.
    publisherAmerican Society of Civil Engineers
    titleEffect of Pyrogenic Silica and Nanosilica on Portland Cement Matrices
    typeJournal Paper
    journal volume30
    journal issue10
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002482
    page4018266
    treeJournal of Materials in Civil Engineering:;2018:;Volume ( 030 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian