YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Characteristics of Water-Foamed Asphalt Mixture under Multiple Freeze-Thaw Cycles: Laboratory Evaluation

    Source: Journal of Materials in Civil Engineering:;2018:;Volume ( 030 ):;issue: 011
    Author:
    You Lingyun;You Zhanping;Dai Qingli;Guo Shuaicheng;Wang Jiaqing;Schultz Meghan
    DOI: 10.1061/(ASCE)MT.1943-5533.0002474
    Publisher: American Society of Civil Engineers
    Abstract: A major concern with the application of water-foamed asphalt mixtures is the possible performance degradation caused by the presence of inclusion water during production. Inclusion water left in the asphalt mixture after compaction affects the performance of the asphalt mixture. The objectives of this study are to investigate the impact of different foaming conditions on the performance of water-foamed asphalt mixtures prepared using oven-dried aggregates, examine the freeze-thaw resistance of water-foamed asphalt mixtures, and assess the water-foamed asphalt mixture damage level after multiple freeze-thaw cycles through an ultrasonic direct test. The samples for this study were prepared in the laboratory based on the method of Superpave mix design. The control groups were mixed and compacted at 135°C and 148°C, respectively. The water-foamed asphalt binders were prepared at different foaming temperatures, i.e., 12°C and 135°C, and the amount of water agent used in this process was .%–2.% by mass of asphalt binder. The water-foamed asphalt samples were mixed at various foaming temperatures but compacted at 135°C. Based on the laboratory test results, the foaming temperature and the inclusion water from the foaming process significantly affected the air void and the tensile strength of the asphalt mixture and the void in the mineral aggregate. The freeze-thaw cycle accelerated the destruction of the internal structure of the asphalt mixture and resulted in an increase in porosity and decrease in cohesive strength between the asphalt binder and aggregate. The ultrasonic direct test method was found to be a feasible approach to assessing the potential damage in water-foamed asphalt mixtures.
    • Download: (977.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Characteristics of Water-Foamed Asphalt Mixture under Multiple Freeze-Thaw Cycles: Laboratory Evaluation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4247824
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorYou Lingyun;You Zhanping;Dai Qingli;Guo Shuaicheng;Wang Jiaqing;Schultz Meghan
    date accessioned2019-02-26T07:33:08Z
    date available2019-02-26T07:33:08Z
    date issued2018
    identifier other%28ASCE%29MT.1943-5533.0002474.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4247824
    description abstractA major concern with the application of water-foamed asphalt mixtures is the possible performance degradation caused by the presence of inclusion water during production. Inclusion water left in the asphalt mixture after compaction affects the performance of the asphalt mixture. The objectives of this study are to investigate the impact of different foaming conditions on the performance of water-foamed asphalt mixtures prepared using oven-dried aggregates, examine the freeze-thaw resistance of water-foamed asphalt mixtures, and assess the water-foamed asphalt mixture damage level after multiple freeze-thaw cycles through an ultrasonic direct test. The samples for this study were prepared in the laboratory based on the method of Superpave mix design. The control groups were mixed and compacted at 135°C and 148°C, respectively. The water-foamed asphalt binders were prepared at different foaming temperatures, i.e., 12°C and 135°C, and the amount of water agent used in this process was .%–2.% by mass of asphalt binder. The water-foamed asphalt samples were mixed at various foaming temperatures but compacted at 135°C. Based on the laboratory test results, the foaming temperature and the inclusion water from the foaming process significantly affected the air void and the tensile strength of the asphalt mixture and the void in the mineral aggregate. The freeze-thaw cycle accelerated the destruction of the internal structure of the asphalt mixture and resulted in an increase in porosity and decrease in cohesive strength between the asphalt binder and aggregate. The ultrasonic direct test method was found to be a feasible approach to assessing the potential damage in water-foamed asphalt mixtures.
    publisherAmerican Society of Civil Engineers
    titleCharacteristics of Water-Foamed Asphalt Mixture under Multiple Freeze-Thaw Cycles: Laboratory Evaluation
    typeJournal Paper
    journal volume30
    journal issue11
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002474
    page4018270
    treeJournal of Materials in Civil Engineering:;2018:;Volume ( 030 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian