YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Utilization of Copper Mine Tailings as Road Base Construction Material through Geopolymerization

    Source: Journal of Materials in Civil Engineering:;2018:;Volume ( 030 ):;issue: 009
    Author:
    Manjarrez Lino;Zhang Lianyang
    DOI: 10.1061/(ASCE)MT.1943-5533.0002397
    Publisher: American Society of Civil Engineers
    Abstract: This paper investigates the utilization of copper mine tailings (MT) as an alternative road base construction material through geopolymerization. Specifically, MT was mixed with different amounts of sodium hydroxide (NaOH) solution at various concentrations from to 11 M, compacted, and then cured at 35°C. After 7 days’ curing, unconfined compression tests were performed on the specimens to determine their unconfined compressive strength (UCS). Scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS) and X-ray diffraction (XRD) analyses were also performed to study the microstructure and chemical composition of the specimens at different conditions. The study has systematically investigated the effect of two main factors, NaOH concentration and moisture content, on the behavior of geopolymerized MT. The results show that the maximum dry unit weight of the compacted MT is influenced by the NaOH concentration, with higher NaOH concentration leading to larger maximum dry unit weight. The behavior of the final geopolymerized MT depends strongly on the NaOH concentration and moisture content of the initial compacted MT. At a constant moisture content, the UCS of geopolymerized MT increases with higher NaOH concentration up to a certain level and then decreases. This behavior is simply related to the effect of NaOH content or Na∶Al ratio on the geopolymerization. For specimens prepared at the same NaOH concentration, the highest UCS does not necessarily occur at the optimum water content or the maximum dry unit weight, emphasizing the contribution of geopolymerization to the UCS. Moreover, this study demonstrates that by selecting appropriate moisture content and NaOH concentration, the geopolymerized MT can meet the strength requirements for road base by different state DOTs and the Federal Highway Administration (FHWA) in the United States. However, before the field application of MT in road base construction, a comprehensive leachate study based on the new EPA standard should be performed to ensure that the MT is environmentally safe.
    • Download: (2.538Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Utilization of Copper Mine Tailings as Road Base Construction Material through Geopolymerization

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4247737
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorManjarrez Lino;Zhang Lianyang
    date accessioned2019-02-26T07:32:33Z
    date available2019-02-26T07:32:33Z
    date issued2018
    identifier other%28ASCE%29MT.1943-5533.0002397.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4247737
    description abstractThis paper investigates the utilization of copper mine tailings (MT) as an alternative road base construction material through geopolymerization. Specifically, MT was mixed with different amounts of sodium hydroxide (NaOH) solution at various concentrations from to 11 M, compacted, and then cured at 35°C. After 7 days’ curing, unconfined compression tests were performed on the specimens to determine their unconfined compressive strength (UCS). Scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS) and X-ray diffraction (XRD) analyses were also performed to study the microstructure and chemical composition of the specimens at different conditions. The study has systematically investigated the effect of two main factors, NaOH concentration and moisture content, on the behavior of geopolymerized MT. The results show that the maximum dry unit weight of the compacted MT is influenced by the NaOH concentration, with higher NaOH concentration leading to larger maximum dry unit weight. The behavior of the final geopolymerized MT depends strongly on the NaOH concentration and moisture content of the initial compacted MT. At a constant moisture content, the UCS of geopolymerized MT increases with higher NaOH concentration up to a certain level and then decreases. This behavior is simply related to the effect of NaOH content or Na∶Al ratio on the geopolymerization. For specimens prepared at the same NaOH concentration, the highest UCS does not necessarily occur at the optimum water content or the maximum dry unit weight, emphasizing the contribution of geopolymerization to the UCS. Moreover, this study demonstrates that by selecting appropriate moisture content and NaOH concentration, the geopolymerized MT can meet the strength requirements for road base by different state DOTs and the Federal Highway Administration (FHWA) in the United States. However, before the field application of MT in road base construction, a comprehensive leachate study based on the new EPA standard should be performed to ensure that the MT is environmentally safe.
    publisherAmerican Society of Civil Engineers
    titleUtilization of Copper Mine Tailings as Road Base Construction Material through Geopolymerization
    typeJournal Paper
    journal volume30
    journal issue9
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002397
    page4018201
    treeJournal of Materials in Civil Engineering:;2018:;Volume ( 030 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian