YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Engineering and Microstructural Properties of Fiber-Reinforced Rice Husk–Ash Based Geopolymer Concrete

    Source: Journal of Materials in Civil Engineering:;2018:;Volume ( 030 ):;issue: 008
    Author:
    Zabihi Seyed Mahmoud;Tavakoli Hamidreza;Mohseni Ehsan
    DOI: 10.1061/(ASCE)MT.1943-5533.0002379
    Publisher: American Society of Civil Engineers
    Abstract: The concrete industry is a remarkable point source of carbon dioxide emission due to the disintegration of raw materials and burning of fuel during the cement manufacturing process. One efficient way to minimize such detrimental environmental effects is utilizing waste and byproduct materials as cement replacements in concrete. An alternative to the production of environmentally friendly concrete is the development of geopolymers. In this study, the possibility of creating structural rice husk ash (RHA)–based geopolymer concrete using high amounts of agricultural solid waste as a byproduct material is investigated. All the samples were reinforced by polypropylene (PP) fiber. The test results indicated that replacement by RHA-based geopolymer improved the mechanical properties of concrete and 1% replacement by geopolymer can be taken into consideration, having the best results environmentally, structurally, and economically. Moreover, the addition of PP fibers increased the flexural and splitting tensile strength. In addition, substantial CO2 reduction, as high as 63%, was measured to be emitted in the creation of the studied sustainable RHA-based geopolymer composites. From the microstructural point of view, reduction of the interfacial transition zone (ITZ) width between the paste and the aggregate is another outcome that could efficiently decrease water permeability.
    • Download: (1.048Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Engineering and Microstructural Properties of Fiber-Reinforced Rice Husk–Ash Based Geopolymer Concrete

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4247721
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorZabihi Seyed Mahmoud;Tavakoli Hamidreza;Mohseni Ehsan
    date accessioned2019-02-26T07:32:26Z
    date available2019-02-26T07:32:26Z
    date issued2018
    identifier other%28ASCE%29MT.1943-5533.0002379.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4247721
    description abstractThe concrete industry is a remarkable point source of carbon dioxide emission due to the disintegration of raw materials and burning of fuel during the cement manufacturing process. One efficient way to minimize such detrimental environmental effects is utilizing waste and byproduct materials as cement replacements in concrete. An alternative to the production of environmentally friendly concrete is the development of geopolymers. In this study, the possibility of creating structural rice husk ash (RHA)–based geopolymer concrete using high amounts of agricultural solid waste as a byproduct material is investigated. All the samples were reinforced by polypropylene (PP) fiber. The test results indicated that replacement by RHA-based geopolymer improved the mechanical properties of concrete and 1% replacement by geopolymer can be taken into consideration, having the best results environmentally, structurally, and economically. Moreover, the addition of PP fibers increased the flexural and splitting tensile strength. In addition, substantial CO2 reduction, as high as 63%, was measured to be emitted in the creation of the studied sustainable RHA-based geopolymer composites. From the microstructural point of view, reduction of the interfacial transition zone (ITZ) width between the paste and the aggregate is another outcome that could efficiently decrease water permeability.
    publisherAmerican Society of Civil Engineers
    titleEngineering and Microstructural Properties of Fiber-Reinforced Rice Husk–Ash Based Geopolymer Concrete
    typeJournal Paper
    journal volume30
    journal issue8
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002379
    page4018183
    treeJournal of Materials in Civil Engineering:;2018:;Volume ( 030 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian