YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Identification of Free–Free Flexibility for Model Updating and Damage Detection of Structures

    Source: Journal of Aerospace Engineering:;2018:;Volume ( 031 ):;issue: 003
    Author:
    Weng Shun;Zhu Hongping;Gao Rongxiong;Li Jiajing;Chen Zhidan
    DOI: 10.1061/(ASCE)AS.1943-5525.0000837
    Publisher: American Society of Civil Engineers
    Abstract: Aerospace and civil structures are sometimes measured under free constraints. In many substructuring methods, the substructures are independently analyzed with free constraints as well. When a structure is free because of insufficient structural constraints, the experimental flexibility is influenced by rigid body motion. This study formulates projection matrices perpendicular to rigid body motions for removing the rigid body components of flexibility of a free–free structure. Without losing generalization, a mass-normalized projection matrix is formulated for the dynamically tested free–free flexibility, and the dynamic condensation method is used to formulate the projection matrix for the partial measurement. The proposed projection matrix not only removes all rigid body components in the measured flexibility but also constructs a dual inverse between the singular free–free stiffness and flexibility, thereby making the flexibility-based model updating feasible for free–free structures. The projection matrix is applied to a laboratory subway lining placed on the ground without constraints and to the substructuring method for substructure-based model updating. The experimental examples prove that the projection matrices are effective in the identification of free–free flexibility for model updating and damage detection.
    • Download: (1.122Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Identification of Free–Free Flexibility for Model Updating and Damage Detection of Structures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4247688
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorWeng Shun;Zhu Hongping;Gao Rongxiong;Li Jiajing;Chen Zhidan
    date accessioned2019-02-26T07:32:13Z
    date available2019-02-26T07:32:13Z
    date issued2018
    identifier other%28ASCE%29AS.1943-5525.0000837.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4247688
    description abstractAerospace and civil structures are sometimes measured under free constraints. In many substructuring methods, the substructures are independently analyzed with free constraints as well. When a structure is free because of insufficient structural constraints, the experimental flexibility is influenced by rigid body motion. This study formulates projection matrices perpendicular to rigid body motions for removing the rigid body components of flexibility of a free–free structure. Without losing generalization, a mass-normalized projection matrix is formulated for the dynamically tested free–free flexibility, and the dynamic condensation method is used to formulate the projection matrix for the partial measurement. The proposed projection matrix not only removes all rigid body components in the measured flexibility but also constructs a dual inverse between the singular free–free stiffness and flexibility, thereby making the flexibility-based model updating feasible for free–free structures. The projection matrix is applied to a laboratory subway lining placed on the ground without constraints and to the substructuring method for substructure-based model updating. The experimental examples prove that the projection matrices are effective in the identification of free–free flexibility for model updating and damage detection.
    publisherAmerican Society of Civil Engineers
    titleIdentification of Free–Free Flexibility for Model Updating and Damage Detection of Structures
    typeJournal Paper
    journal volume31
    journal issue3
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0000837
    page4018017
    treeJournal of Aerospace Engineering:;2018:;Volume ( 031 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian