YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fault-Tolerant Decoupling Control for Spacecraft with SGCMGs Based on an Active-Disturbance Rejection-Control Technique

    Source: Journal of Aerospace Engineering:;2018:;Volume ( 031 ):;issue: 002
    Author:
    Zhang Fuzhen;Jin Lei;Xu Shijie;Zhao Yushan
    DOI: 10.1061/(ASCE)AS.1943-5525.0000822
    Publisher: American Society of Civil Engineers
    Abstract: This paper describes a fault-tolerant decoupling-control algorithm for spacecraft incorporating single-gimbal control moment gyroscopes (SGCMGs), simultaneously considering the SGCMG rotor and gimbal faults. Double-loop control theory is utilized to design the attitude system. An outer-loop controller is designed to obtain a control torque with proportional-derivative-type (PD-type) technology, and a singular direction-avoidance (SDA) steering law is adopted to calculate a virtual gimbal-rate vector, which will be the reference signal for the inner-loop controller. The actuator fault is not considered in the outer-loop system. In the inner-loop system, an active-disturbance rejection controller (ADRC) is designed. The ADRC incorporates an extended-state observer (ESO) to estimate the total disturbance for each SGCMG gimbal or rotor in order to track the virtual gimbal rate or nominal angular momentum by considering the gimbal- and rotor-rate faults. In this way, a decoupling controller with fault-tolerance capability is achieved. The simulation results demonstrate that the proposed method is strongly robust against actuator faults.
    • Download: (1.491Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fault-Tolerant Decoupling Control for Spacecraft with SGCMGs Based on an Active-Disturbance Rejection-Control Technique

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4247672
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorZhang Fuzhen;Jin Lei;Xu Shijie;Zhao Yushan
    date accessioned2019-02-26T07:32:06Z
    date available2019-02-26T07:32:06Z
    date issued2018
    identifier other%28ASCE%29AS.1943-5525.0000822.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4247672
    description abstractThis paper describes a fault-tolerant decoupling-control algorithm for spacecraft incorporating single-gimbal control moment gyroscopes (SGCMGs), simultaneously considering the SGCMG rotor and gimbal faults. Double-loop control theory is utilized to design the attitude system. An outer-loop controller is designed to obtain a control torque with proportional-derivative-type (PD-type) technology, and a singular direction-avoidance (SDA) steering law is adopted to calculate a virtual gimbal-rate vector, which will be the reference signal for the inner-loop controller. The actuator fault is not considered in the outer-loop system. In the inner-loop system, an active-disturbance rejection controller (ADRC) is designed. The ADRC incorporates an extended-state observer (ESO) to estimate the total disturbance for each SGCMG gimbal or rotor in order to track the virtual gimbal rate or nominal angular momentum by considering the gimbal- and rotor-rate faults. In this way, a decoupling controller with fault-tolerance capability is achieved. The simulation results demonstrate that the proposed method is strongly robust against actuator faults.
    publisherAmerican Society of Civil Engineers
    titleFault-Tolerant Decoupling Control for Spacecraft with SGCMGs Based on an Active-Disturbance Rejection-Control Technique
    typeJournal Paper
    journal volume31
    journal issue2
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0000822
    page4018001
    treeJournal of Aerospace Engineering:;2018:;Volume ( 031 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian