YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Safety Assessment of Protection Cover under the Blast Pressure of Aircraft Tire Blowout

    Source: Journal of Aerospace Engineering:;2018:;Volume ( 031 ):;issue: 002
    Author:
    Yao Shile;Yue Zhufeng;Zhang Jianmin;Geng Xiaoliang;Wang Peiyan;Yang Hao
    DOI: 10.1061/(ASCE)AS.1943-5525.0000819
    Publisher: American Society of Civil Engineers
    Abstract: The protection cover is an important equipment installed in the main landing gear cabin to protect the hydraulic lines and equipment. To assess the safety of the protection cover, the authors conducted an experimental and numerical study on the dynamic responses of protection cover in the main landing gear cabin under blast pressure of aircraft tire blowout, and the influences of various blast conditions were discussed. In the experimental study, three protection covers with different burst target points and tire inflation pressure were tested. Based on the data recorded by the pressure transducers, a new blast function in the time and space domains was proposed to describe the pressure distribution on the outer surface of the protection cover during the process of aircraft tire blowout. To validate the proposed burst model and finite-element model of protection cover, the simulations results were compared with the experimental results. It shows that the numerical calculations and experiment results exhibit a satisfactory agreement, which indicates that the models in the present study are reliable and can be used for further studies. Moreover, considering the influences of the burst target point and the tire inflation pressure, the dynamic responses of the protection cover were analyzed in detail with the finite-element method. According to the numerical simulation results, when at a certain inflation pressure, the protection cover is found to undergo the severest impact with the burst target point A, which is close to the center of the protection cover.
    • Download: (3.110Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Safety Assessment of Protection Cover under the Blast Pressure of Aircraft Tire Blowout

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4247669
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorYao Shile;Yue Zhufeng;Zhang Jianmin;Geng Xiaoliang;Wang Peiyan;Yang Hao
    date accessioned2019-02-26T07:32:05Z
    date available2019-02-26T07:32:05Z
    date issued2018
    identifier other%28ASCE%29AS.1943-5525.0000819.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4247669
    description abstractThe protection cover is an important equipment installed in the main landing gear cabin to protect the hydraulic lines and equipment. To assess the safety of the protection cover, the authors conducted an experimental and numerical study on the dynamic responses of protection cover in the main landing gear cabin under blast pressure of aircraft tire blowout, and the influences of various blast conditions were discussed. In the experimental study, three protection covers with different burst target points and tire inflation pressure were tested. Based on the data recorded by the pressure transducers, a new blast function in the time and space domains was proposed to describe the pressure distribution on the outer surface of the protection cover during the process of aircraft tire blowout. To validate the proposed burst model and finite-element model of protection cover, the simulations results were compared with the experimental results. It shows that the numerical calculations and experiment results exhibit a satisfactory agreement, which indicates that the models in the present study are reliable and can be used for further studies. Moreover, considering the influences of the burst target point and the tire inflation pressure, the dynamic responses of the protection cover were analyzed in detail with the finite-element method. According to the numerical simulation results, when at a certain inflation pressure, the protection cover is found to undergo the severest impact with the burst target point A, which is close to the center of the protection cover.
    publisherAmerican Society of Civil Engineers
    titleSafety Assessment of Protection Cover under the Blast Pressure of Aircraft Tire Blowout
    typeJournal Paper
    journal volume31
    journal issue2
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0000819
    page4017103
    treeJournal of Aerospace Engineering:;2018:;Volume ( 031 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian