YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Active Vibration Control of Composite Pyramidal Lattice Truss Core Sandwich Plates

    Source: Journal of Aerospace Engineering:;2018:;Volume ( 031 ):;issue: 002
    Author:
    Li Meng;Li Fengming;Jing Xingjian
    DOI: 10.1061/(ASCE)AS.1943-5525.0000817
    Publisher: American Society of Civil Engineers
    Abstract: The vibration characteristics of composite pyramidal truss core sandwich plates with piezoelectric actuator/sensor pairs were investigated, and the active vibration control methods of the structural system were also developed. The face sheets and truss core were all made of carbon fiber–reinforced composites. In order to construct an effective control system, the piezoelectric materials were symmetrically bonded on the top and bottom surfaces of the sandwich plate to act as the actuators and sensors. Hamilton’s principle with the assumed mode method was used to establish the equation of motion of the composite pyramidal lattice sandwich plate bonded with piezoelectric materials. The natural frequencies of the composite sandwich panel were calculated and validated by the finite-element method. A negative velocity feedback control method and a linear quadratic regulator (LQR) were employed in the controller design. The controlled vibration responses of the composite sandwich panel with the two different controllers under transverse impulse excitation were calculated. Numerical results show that the proposed active control methods can effectively suppress the vibration of the composite pyramidal truss core sandwich panel, and that LQR control requires less energy than velocity feedback control.
    • Download: (1.608Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Active Vibration Control of Composite Pyramidal Lattice Truss Core Sandwich Plates

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4247667
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorLi Meng;Li Fengming;Jing Xingjian
    date accessioned2019-02-26T07:32:05Z
    date available2019-02-26T07:32:05Z
    date issued2018
    identifier other%28ASCE%29AS.1943-5525.0000817.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4247667
    description abstractThe vibration characteristics of composite pyramidal truss core sandwich plates with piezoelectric actuator/sensor pairs were investigated, and the active vibration control methods of the structural system were also developed. The face sheets and truss core were all made of carbon fiber–reinforced composites. In order to construct an effective control system, the piezoelectric materials were symmetrically bonded on the top and bottom surfaces of the sandwich plate to act as the actuators and sensors. Hamilton’s principle with the assumed mode method was used to establish the equation of motion of the composite pyramidal lattice sandwich plate bonded with piezoelectric materials. The natural frequencies of the composite sandwich panel were calculated and validated by the finite-element method. A negative velocity feedback control method and a linear quadratic regulator (LQR) were employed in the controller design. The controlled vibration responses of the composite sandwich panel with the two different controllers under transverse impulse excitation were calculated. Numerical results show that the proposed active control methods can effectively suppress the vibration of the composite pyramidal truss core sandwich panel, and that LQR control requires less energy than velocity feedback control.
    publisherAmerican Society of Civil Engineers
    titleActive Vibration Control of Composite Pyramidal Lattice Truss Core Sandwich Plates
    typeJournal Paper
    journal volume31
    journal issue2
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0000817
    page4017097
    treeJournal of Aerospace Engineering:;2018:;Volume ( 031 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian