YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Architectural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Architectural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Toward Grid-Friendly Zero-Energy Buildings

    Source: Journal of Architectural Engineering:;2018:;Volume ( 024 ):;issue: 002
    Author:
    Bruggmann Philipp;Henze Gregor P.
    DOI: 10.1061/(ASCE)AE.1943-5568.0000304
    Publisher: American Society of Civil Engineers
    Abstract: High-performance buildings, such as zero-energy buildings (ZEBs), are an important step toward a reduction in greenhouse-gas emissions. Because ZEBs may exhibit large differences between demand and on-site generated electricity, residual electrical loads imposed by the building may fluctuate between positive and negative values. Furthermore, such buildings can be characterized by large temporal changes in residual load, commonly caused by clouds passing on a sunny day. Today, electricity grid operators can easily deal with a single ZEB with this behavior. But what happens if large portfolios of ZEBs have the same behavior? In this study, a highly efficient office building with a total floor area of 8,355 m2 located in Denver, Colorado, was designed and simulated using a detailed building energy modeling approach. Combining the building energy model with a photovoltaic model showed that the building reached net positive status on an annual basis. Further analysis of residual loads and strategies for their reduction revealed the limited potential of demand-side management in ZEBs and the high flexibility of batteries. Using a multiple-objective optimization approach for optimizing several simplified electric and thermal storage systems allowed the comparison of different strategies for residual load reduction. Although electrical storage may not yet be economical given today’s system costs, results show that the residual loads can be effectively managed and reduced, and at the same time, an increase in photovoltaic self-consumption can be achieved. The analysis concludes with the presentation of a multiple-objective optimal solution (Pareto front) for a battery storage model, indicating what utility incentives would be required to achieve cost-effectiveness for a range of price scenarios for battery systems.
    • Download: (3.192Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Toward Grid-Friendly Zero-Energy Buildings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4247629
    Collections
    • Journal of Architectural Engineering

    Show full item record

    contributor authorBruggmann Philipp;Henze Gregor P.
    date accessioned2019-02-26T07:31:48Z
    date available2019-02-26T07:31:48Z
    date issued2018
    identifier other%28ASCE%29AE.1943-5568.0000304.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4247629
    description abstractHigh-performance buildings, such as zero-energy buildings (ZEBs), are an important step toward a reduction in greenhouse-gas emissions. Because ZEBs may exhibit large differences between demand and on-site generated electricity, residual electrical loads imposed by the building may fluctuate between positive and negative values. Furthermore, such buildings can be characterized by large temporal changes in residual load, commonly caused by clouds passing on a sunny day. Today, electricity grid operators can easily deal with a single ZEB with this behavior. But what happens if large portfolios of ZEBs have the same behavior? In this study, a highly efficient office building with a total floor area of 8,355 m2 located in Denver, Colorado, was designed and simulated using a detailed building energy modeling approach. Combining the building energy model with a photovoltaic model showed that the building reached net positive status on an annual basis. Further analysis of residual loads and strategies for their reduction revealed the limited potential of demand-side management in ZEBs and the high flexibility of batteries. Using a multiple-objective optimization approach for optimizing several simplified electric and thermal storage systems allowed the comparison of different strategies for residual load reduction. Although electrical storage may not yet be economical given today’s system costs, results show that the residual loads can be effectively managed and reduced, and at the same time, an increase in photovoltaic self-consumption can be achieved. The analysis concludes with the presentation of a multiple-objective optimal solution (Pareto front) for a battery storage model, indicating what utility incentives would be required to achieve cost-effectiveness for a range of price scenarios for battery systems.
    publisherAmerican Society of Civil Engineers
    titleToward Grid-Friendly Zero-Energy Buildings
    typeJournal Paper
    journal volume24
    journal issue2
    journal titleJournal of Architectural Engineering
    identifier doi10.1061/(ASCE)AE.1943-5568.0000304
    page4018007
    treeJournal of Architectural Engineering:;2018:;Volume ( 024 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian