YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Long-Term Mechanical Properties of Steel–Concrete Connectors Subjected to Corrosion and Load Coupling

    Source: Journal of Materials in Civil Engineering:;2018:;Volume ( 030 ):;issue: 005
    Author:
    Cao Guohui;Yang Liang;Zhang Wang;Peng Xirong;Dai Ye
    DOI: 10.1061/(ASCE)MT.1943-5533.0002224
    Publisher: American Society of Civil Engineers
    Abstract: Steel–concrete composite structures are widely used in modern buildings and bridges for their great rigidity, light weight, and simple construction. However, the mechanical behaviors of steel–concrete composite structures degrade over time because of environmental corrosion and long-term load. The existing research on structural durability has often focused on concrete or steel structures. Few studies have been conducted on steel–concrete composite structures, especially on structures under the coupled impact of corrosion and load. To investigate the coupled impact of corrosion and load on the performance of steel–concrete composite structures, a long-term test of 2 days was carried out on eight connectors. The corrosion of the studs was accelerated by DC current, and the test connectors were submerged in a salt solution with a concentration of 5% NaCl. Deformations including the concrete strain and relative slippage between the concrete slab and the steel beam were measured in the long-term test. The experimental results showed that at the end of the long-term test, the deformations induced by shrinkage were about three times larger than those induced by creep for the steel–concrete composite structures. Notably, the stiffness of the connectors degraded substantially with the aggravation of the corrosion of the studs, whereas the concrete strain was only slightly affected by the studs’ corrosion. The measured deformations were also obviously larger than those calculated by the current specifications. As a reference, a suitable formula for the long-term elastic modulus is proposed to enhance the applicability of specifications.
    • Download: (527.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Long-Term Mechanical Properties of Steel–Concrete Connectors Subjected to Corrosion and Load Coupling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4247595
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorCao Guohui;Yang Liang;Zhang Wang;Peng Xirong;Dai Ye
    date accessioned2019-02-26T07:31:29Z
    date available2019-02-26T07:31:29Z
    date issued2018
    identifier other%28ASCE%29MT.1943-5533.0002224.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4247595
    description abstractSteel–concrete composite structures are widely used in modern buildings and bridges for their great rigidity, light weight, and simple construction. However, the mechanical behaviors of steel–concrete composite structures degrade over time because of environmental corrosion and long-term load. The existing research on structural durability has often focused on concrete or steel structures. Few studies have been conducted on steel–concrete composite structures, especially on structures under the coupled impact of corrosion and load. To investigate the coupled impact of corrosion and load on the performance of steel–concrete composite structures, a long-term test of 2 days was carried out on eight connectors. The corrosion of the studs was accelerated by DC current, and the test connectors were submerged in a salt solution with a concentration of 5% NaCl. Deformations including the concrete strain and relative slippage between the concrete slab and the steel beam were measured in the long-term test. The experimental results showed that at the end of the long-term test, the deformations induced by shrinkage were about three times larger than those induced by creep for the steel–concrete composite structures. Notably, the stiffness of the connectors degraded substantially with the aggravation of the corrosion of the studs, whereas the concrete strain was only slightly affected by the studs’ corrosion. The measured deformations were also obviously larger than those calculated by the current specifications. As a reference, a suitable formula for the long-term elastic modulus is proposed to enhance the applicability of specifications.
    publisherAmerican Society of Civil Engineers
    titleLong-Term Mechanical Properties of Steel–Concrete Connectors Subjected to Corrosion and Load Coupling
    typeJournal Paper
    journal volume30
    journal issue5
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002224
    page4018058
    treeJournal of Materials in Civil Engineering:;2018:;Volume ( 030 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian