YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Untitled

    Source: Journal of Materials in Civil Engineering:;2018:;Volume ( 030 ):;issue: 003
    Author:
    Jin Can;Yang Xu;You Zhanping;Liu Kai
    DOI: 10.1061/(ASCE)MT.1943-5533.0002210
    Publisher: American Society of Civil Engineers
    Abstract: The morphology of aggregates has a significant effect on the mechanical performance of aggregate-based materials such as asphalt concrete and cement concrete. This paper obtains shape indexes of aggregates, including aggregate sieve size, orientation, sphericity, and volume. The four indexes can be obtained through a virtual measurement method based on the minimum axis-aligned bounding box (AABB) of a three-dimensional (3D) solid model of aggregate. The methodology consists of three main steps: (1) the 3D solid model of each aggregate is developed from X-ray computed tomography (CT) images for aggregate cross sections, and the aggregate sphericity and volume are calculated; (2) the 3D aggregate model is rotated from the initial orientation to find a target orientation at which a minimum AABB occurs; based on that, the aggregate initial orientation is determined by the direction of the longest side of the minimum AABB and the angle rotated; and (3) the searching route for the cross section that determines the sieve size of the aggregate is computed, and the cross section with the longest length is identified to calculate the aggregate sieve size. The 3D solid models developed in this paper are very close to real aggregates, and contain intact geometric boundary information in their 3D internal structures. Laboratory measurement indicates that the virtual measurement method can significantly facilitate the accuracy, efficiency, and automation of aggregate shape characterization.
    • Download: (1.989Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4247580
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorJin Can;Yang Xu;You Zhanping;Liu Kai
    date accessioned2019-02-26T07:31:24Z
    date available2019-02-26T07:31:24Z
    date issued2018
    identifier other%28ASCE%29MT.1943-5533.0002210.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4247580
    description abstractThe morphology of aggregates has a significant effect on the mechanical performance of aggregate-based materials such as asphalt concrete and cement concrete. This paper obtains shape indexes of aggregates, including aggregate sieve size, orientation, sphericity, and volume. The four indexes can be obtained through a virtual measurement method based on the minimum axis-aligned bounding box (AABB) of a three-dimensional (3D) solid model of aggregate. The methodology consists of three main steps: (1) the 3D solid model of each aggregate is developed from X-ray computed tomography (CT) images for aggregate cross sections, and the aggregate sphericity and volume are calculated; (2) the 3D aggregate model is rotated from the initial orientation to find a target orientation at which a minimum AABB occurs; based on that, the aggregate initial orientation is determined by the direction of the longest side of the minimum AABB and the angle rotated; and (3) the searching route for the cross section that determines the sieve size of the aggregate is computed, and the cross section with the longest length is identified to calculate the aggregate sieve size. The 3D solid models developed in this paper are very close to real aggregates, and contain intact geometric boundary information in their 3D internal structures. Laboratory measurement indicates that the virtual measurement method can significantly facilitate the accuracy, efficiency, and automation of aggregate shape characterization.
    publisherAmerican Society of Civil Engineers
    typeJournal Paper
    journal volume30
    journal issue3
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002210
    page4018026
    treeJournal of Materials in Civil Engineering:;2018:;Volume ( 030 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian