YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparison of Cast-In-Situ and Prefabricated UHTCC Repair Systems under Bending

    Source: Journal of Materials in Civil Engineering:;2018:;Volume ( 030 ):;issue: 001
    Author:
    Wang Bing;Li Qinghua;Liu Fei;Xu Shilang;Zhou Hougui;Tan Kaiyan
    DOI: 10.1061/(ASCE)MT.1943-5533.0002100
    Publisher: American Society of Civil Engineers
    Abstract: Ultrahigh-toughness cementitious composite (UHTCC) is a new type of cementitious material that is suitable for durability repair of deteriorated concrete structures. One of the key issues in this repair technology is the behavior of interfacial bonds. In this study, the bond properties between the UHTCC and the old concrete were evaluated by conducting four-point bending tests. The UHTCC was prepared using two methods: cast-in-situ and prefabrication. The test parameters include the roughness of the concrete substrate, roughness of the prefabricated UHTCC, strength of the old concrete, primer, and bonding agent. Two-way analysis of variance was used to analyze the effect of these test parameters on the bond strength. Moreover, two regression formulae were proposed to predict the flexural bond strength of the composite beams. The results showed that the flexural bond strength of the repair system tended to increase with the increase in the roughness values of the concrete substrate and prefabricated UHTCC and strength of the old concrete. However, a very high roughness could damage the interfacial zone; hence, the roughness should be controlled in a particular range. The results also revealed that suitable primers and bonding agents, e.g., polymer-modified material and fly ash–silica fume-modified material, could improve the bond strength of the interface. Moreover, double-layer bonding configurations were found to exist in the prefabricated repair system. The flexural bond strength depends on the weaker bonding plane, and the interface control needs to be considered during the design and construction. In particular, two-way analysis of variance was proven a reliable tool in evaluating the experimental results. The predicted flexural bond strength was in good agreement with the experimental value.
    • Download: (1.270Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparison of Cast-In-Situ and Prefabricated UHTCC Repair Systems under Bending

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4247496
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorWang Bing;Li Qinghua;Liu Fei;Xu Shilang;Zhou Hougui;Tan Kaiyan
    date accessioned2019-02-26T07:30:49Z
    date available2019-02-26T07:30:49Z
    date issued2018
    identifier other%28ASCE%29MT.1943-5533.0002100.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4247496
    description abstractUltrahigh-toughness cementitious composite (UHTCC) is a new type of cementitious material that is suitable for durability repair of deteriorated concrete structures. One of the key issues in this repair technology is the behavior of interfacial bonds. In this study, the bond properties between the UHTCC and the old concrete were evaluated by conducting four-point bending tests. The UHTCC was prepared using two methods: cast-in-situ and prefabrication. The test parameters include the roughness of the concrete substrate, roughness of the prefabricated UHTCC, strength of the old concrete, primer, and bonding agent. Two-way analysis of variance was used to analyze the effect of these test parameters on the bond strength. Moreover, two regression formulae were proposed to predict the flexural bond strength of the composite beams. The results showed that the flexural bond strength of the repair system tended to increase with the increase in the roughness values of the concrete substrate and prefabricated UHTCC and strength of the old concrete. However, a very high roughness could damage the interfacial zone; hence, the roughness should be controlled in a particular range. The results also revealed that suitable primers and bonding agents, e.g., polymer-modified material and fly ash–silica fume-modified material, could improve the bond strength of the interface. Moreover, double-layer bonding configurations were found to exist in the prefabricated repair system. The flexural bond strength depends on the weaker bonding plane, and the interface control needs to be considered during the design and construction. In particular, two-way analysis of variance was proven a reliable tool in evaluating the experimental results. The predicted flexural bond strength was in good agreement with the experimental value.
    publisherAmerican Society of Civil Engineers
    titleComparison of Cast-In-Situ and Prefabricated UHTCC Repair Systems under Bending
    typeJournal Paper
    journal volume30
    journal issue1
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002100
    page4017249
    treeJournal of Materials in Civil Engineering:;2018:;Volume ( 030 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian