YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Estimating Range-Dependent Evaporation Duct Height

    Source: Journal of Atmospheric and Oceanic Technology:;2017:;volume( 034 ):;issue: 005::page 1113
    Author:
    Zhao, Xiaofeng;Yardim, Caglar;Wang, Dongxiao;Howe, Bruce M.
    DOI: 10.1175/JTECH-D-16-0125.1
    Publisher: American Meteorological Society
    Abstract: AbstractThe refractivity from clutter (RFC) technique has been proved to be an effective way to estimate atmospheric duct structure. An important issue for RFC is how to make the estimate more robust, especially in range-dependent ducting conditions. Traditionally, statistical inversion methods need a large number of forward propagation model runs to obtain an acceptable result. Especially when the parameter search space is multidimensional, these methods are prone to being trapped into local optimal solutions. Recently published results (Zhao and Huang) indicate that the adjoint parabolic equation (PE) method holds promise for real-time estimation of one-dimensional refractive index structure from radar sea clutter returns. This paper is aimed at extending the adjoint PE method to range-dependent evaporation duct cases, with a log-linear relationship describing duct structures. Numerical simulations are used to test the performance of this method and the results are compared with that retrieved using a genetic algorithm. Both noise-free and 3-dB additive Gaussian noise clutter simulations are considered, as well as linearly and nonlinearly varying duct height with range.
    • Download: (1.125Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Estimating Range-Dependent Evaporation Duct Height

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4246734
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorZhao, Xiaofeng;Yardim, Caglar;Wang, Dongxiao;Howe, Bruce M.
    date accessioned2018-01-03T11:03:38Z
    date available2018-01-03T11:03:38Z
    date copyright4/7/2017 12:00:00 AM
    date issued2017
    identifier otherjtech-d-16-0125.1.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4246734
    description abstractAbstractThe refractivity from clutter (RFC) technique has been proved to be an effective way to estimate atmospheric duct structure. An important issue for RFC is how to make the estimate more robust, especially in range-dependent ducting conditions. Traditionally, statistical inversion methods need a large number of forward propagation model runs to obtain an acceptable result. Especially when the parameter search space is multidimensional, these methods are prone to being trapped into local optimal solutions. Recently published results (Zhao and Huang) indicate that the adjoint parabolic equation (PE) method holds promise for real-time estimation of one-dimensional refractive index structure from radar sea clutter returns. This paper is aimed at extending the adjoint PE method to range-dependent evaporation duct cases, with a log-linear relationship describing duct structures. Numerical simulations are used to test the performance of this method and the results are compared with that retrieved using a genetic algorithm. Both noise-free and 3-dB additive Gaussian noise clutter simulations are considered, as well as linearly and nonlinearly varying duct height with range.
    publisherAmerican Meteorological Society
    titleEstimating Range-Dependent Evaporation Duct Height
    typeJournal Paper
    journal volume34
    journal issue5
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-16-0125.1
    journal fristpage1113
    journal lastpage1123
    treeJournal of Atmospheric and Oceanic Technology:;2017:;volume( 034 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian