YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Seasonal Variations in Severe Weather Forecast Skill in an Experimental Convection-Allowing Model

    Source: Weather and Forecasting:;2017:;volume( 032 ):;issue: 005::page 1885
    Author:
    Sobash, Ryan A.;Kain, John S.
    DOI: 10.1175/WAF-D-17-0043.1
    Publisher: American Meteorological Society
    Abstract: AbstractEight years of daily, experimental, deterministic, convection-allowing model (CAM) forecasts, produced by the National Severe Storms Laboratory, were evaluated to assess their ability at predicting severe weather hazards over a diverse collection of seasons, regions, and environments. To do so, forecasts of severe weather hazards were produced and verified as in previous studies using CAM output, namely by thresholding the updraft helicity (UH) field, smoothing the resulting binary field to create surrogate severe probability forecasts (SSPFs), and verifying the SSPFs against observed storm reports. SSPFs were most skillful during the spring and fall, with a relative minimum in skill observed during the summer. SSPF skill during the winter months was more variable than during other seasons, partly due to the limited sample size of events, but was often less than that during the warm season. The seasonal behavior of SSPF skill was partly driven by the relationship between the UH threshold and the likelihood of obtaining severe storm reports. Varying UH thresholds by season and region produced SSPFs that were more skillful than using a fixed UH threshold to identify severe convection. Accounting for this variability was most important during the cool season, when a lower UH threshold produced larger SSPF skill compared to warm-season events, and during the summer, when large differences in skill occurred within different parts of the continental United States (CONUS), depending on the choice of UH threshold. This relationship between UH threshold and SSPF skill is discussed within the larger scope of generating skillful CAM-based guidance for hazardous convective weather and verifying CAM predictions.
    • Download: (3.685Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Seasonal Variations in Severe Weather Forecast Skill in an Experimental Convection-Allowing Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4246655
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorSobash, Ryan A.;Kain, John S.
    date accessioned2018-01-03T11:03:20Z
    date available2018-01-03T11:03:20Z
    date copyright8/31/2017 12:00:00 AM
    date issued2017
    identifier otherwaf-d-17-0043.1.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4246655
    description abstractAbstractEight years of daily, experimental, deterministic, convection-allowing model (CAM) forecasts, produced by the National Severe Storms Laboratory, were evaluated to assess their ability at predicting severe weather hazards over a diverse collection of seasons, regions, and environments. To do so, forecasts of severe weather hazards were produced and verified as in previous studies using CAM output, namely by thresholding the updraft helicity (UH) field, smoothing the resulting binary field to create surrogate severe probability forecasts (SSPFs), and verifying the SSPFs against observed storm reports. SSPFs were most skillful during the spring and fall, with a relative minimum in skill observed during the summer. SSPF skill during the winter months was more variable than during other seasons, partly due to the limited sample size of events, but was often less than that during the warm season. The seasonal behavior of SSPF skill was partly driven by the relationship between the UH threshold and the likelihood of obtaining severe storm reports. Varying UH thresholds by season and region produced SSPFs that were more skillful than using a fixed UH threshold to identify severe convection. Accounting for this variability was most important during the cool season, when a lower UH threshold produced larger SSPF skill compared to warm-season events, and during the summer, when large differences in skill occurred within different parts of the continental United States (CONUS), depending on the choice of UH threshold. This relationship between UH threshold and SSPF skill is discussed within the larger scope of generating skillful CAM-based guidance for hazardous convective weather and verifying CAM predictions.
    publisherAmerican Meteorological Society
    titleSeasonal Variations in Severe Weather Forecast Skill in an Experimental Convection-Allowing Model
    typeJournal Paper
    journal volume32
    journal issue5
    journal titleWeather and Forecasting
    identifier doi10.1175/WAF-D-17-0043.1
    journal fristpage1885
    journal lastpage1902
    treeWeather and Forecasting:;2017:;volume( 032 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian