YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Impact of Storm Size on Prediction of Storm Track and Intensity Using the 2016 Operational GFDL Hurricane Model

    Source: Weather and Forecasting:;2017:;volume( 032 ):;issue: 004::page 1491
    Author:
    Bender, Morris A.;Marchok, Timothy P.;Sampson, Charles R.;Knaff, John A.;Morin, Matthew J.
    DOI: 10.1175/WAF-D-16-0220.1
    Publisher: American Meteorological Society
    Abstract: AbstractThe impact of storm size on the forecast of tropical cyclone storm track and intensity is investigated using the 2016 version of the operational GFDL hurricane model. Evaluation was made for 1529 forecasts in the Atlantic, eastern Pacific, and western North Pacific basins, during the 2014 and 2015 seasons. The track and intensity errors were computed from forecasts in which the 34-kt (where 1 kt = 0.514 m s?1) wind radii obtained from the operational TC vitals that are used to initialize TCs in the GFDL model were replaced with wind radii estimates derived using an equally weighted average of six objective estimates. It was found that modifying the radius of 34-kt winds had a significant positive impact on the intensity forecasts in the 1?2 day lead times. For example, at 48 h, the intensity error was reduced 10%, 5%, and 4% in the Atlantic, eastern Pacific, and western North Pacific, respectively. The largest improvements in intensity forecasts were for those tropical cyclones undergoing rapid intensification, with a maximum error reduction in the 1?2 day forecast lead time of 14% and 17% in the eastern and western North Pacific, respectively. The large negative intensity biases in the eastern and western North Pacific were also reduced 25% and 75% in the 12?72-h forecast lead times. Although the overall impact on the average track error was neutral, forecasts of recurving storms were improved and tracks of nonrecurving storms degraded. Results also suggest that objective specification of storm size may impact intensity forecasts in other high-resolution numerical models, particularly for tropical cyclones entering a rapid intensification phase.
    • Download: (3.560Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Impact of Storm Size on Prediction of Storm Track and Intensity Using the 2016 Operational GFDL Hurricane Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4246639
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorBender, Morris A.;Marchok, Timothy P.;Sampson, Charles R.;Knaff, John A.;Morin, Matthew J.
    date accessioned2018-01-03T11:03:17Z
    date available2018-01-03T11:03:17Z
    date copyright6/6/2017 12:00:00 AM
    date issued2017
    identifier otherwaf-d-16-0220.1.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4246639
    description abstractAbstractThe impact of storm size on the forecast of tropical cyclone storm track and intensity is investigated using the 2016 version of the operational GFDL hurricane model. Evaluation was made for 1529 forecasts in the Atlantic, eastern Pacific, and western North Pacific basins, during the 2014 and 2015 seasons. The track and intensity errors were computed from forecasts in which the 34-kt (where 1 kt = 0.514 m s?1) wind radii obtained from the operational TC vitals that are used to initialize TCs in the GFDL model were replaced with wind radii estimates derived using an equally weighted average of six objective estimates. It was found that modifying the radius of 34-kt winds had a significant positive impact on the intensity forecasts in the 1?2 day lead times. For example, at 48 h, the intensity error was reduced 10%, 5%, and 4% in the Atlantic, eastern Pacific, and western North Pacific, respectively. The largest improvements in intensity forecasts were for those tropical cyclones undergoing rapid intensification, with a maximum error reduction in the 1?2 day forecast lead time of 14% and 17% in the eastern and western North Pacific, respectively. The large negative intensity biases in the eastern and western North Pacific were also reduced 25% and 75% in the 12?72-h forecast lead times. Although the overall impact on the average track error was neutral, forecasts of recurving storms were improved and tracks of nonrecurving storms degraded. Results also suggest that objective specification of storm size may impact intensity forecasts in other high-resolution numerical models, particularly for tropical cyclones entering a rapid intensification phase.
    publisherAmerican Meteorological Society
    titleImpact of Storm Size on Prediction of Storm Track and Intensity Using the 2016 Operational GFDL Hurricane Model
    typeJournal Paper
    journal volume32
    journal issue4
    journal titleWeather and Forecasting
    identifier doi10.1175/WAF-D-16-0220.1
    journal fristpage1491
    journal lastpage1508
    treeWeather and Forecasting:;2017:;volume( 032 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian