YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Untitled

    Source: Monthly Weather Review:;2017:;volume( 145 ):;issue: 011::page 4467
    Author:
    Hodyss, Daniel;Anderson, Jeffrey L.;Collins, Nancy;Campbell, William F.;Reinecke, Patrick A.
    DOI: 10.1175/MWR-D-17-0089.1
    Publisher: American Meteorological Society
    Abstract: AbstractIt is well known that the ensemble-based variants of the Kalman filter may be thought of as producing a state estimate that is consistent with linear regression. Here, it is shown how quadratic polynomial regression can be performed within a serial data assimilation framework. The addition of quadratic polynomial regression to the Data Assimilation Research Testbed (DART) is also discussed and its performance is illustrated using a hierarchy of models from simple scalar systems to a GCM.
    • Download: (328.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4246600
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorHodyss, Daniel;Anderson, Jeffrey L.;Collins, Nancy;Campbell, William F.;Reinecke, Patrick A.
    date accessioned2018-01-03T11:03:09Z
    date available2018-01-03T11:03:09Z
    date copyright8/22/2017 12:00:00 AM
    date issued2017
    identifier othermwr-d-17-0089.1.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4246600
    description abstractAbstractIt is well known that the ensemble-based variants of the Kalman filter may be thought of as producing a state estimate that is consistent with linear regression. Here, it is shown how quadratic polynomial regression can be performed within a serial data assimilation framework. The addition of quadratic polynomial regression to the Data Assimilation Research Testbed (DART) is also discussed and its performance is illustrated using a hierarchy of models from simple scalar systems to a GCM.
    publisherAmerican Meteorological Society
    typeJournal Paper
    journal volume145
    journal issue11
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-17-0089.1
    journal fristpage4467
    journal lastpage4479
    treeMonthly Weather Review:;2017:;volume( 145 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian