YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Optimization Strategy for Identifying Parameter Sensitivity in Atmospheric and Oceanic Models

    Source: Monthly Weather Review:;2017:;volume( 145 ):;issue: 008::page 3293
    Author:
    Wang, Qiang;Tang, Youmin;Dijkstra, Henk A.
    DOI: 10.1175/MWR-D-16-0393.1
    Publisher: American Meteorological Society
    Abstract: AbstractA new optimization strategy is proposed to identify the sensitivities of simulations of atmospheric and oceanic models to uncertain parameters. The strategy is based on a nonlinear optimization method that is able to estimate the maximum values of specific parameter sensitivity measures; meanwhile, it takes into account interactions among uncertain parameters. It is tested using the Lorenz?63 model and an intermediate complexity 2.5-layer shallow-water model of the North Pacific Ocean. For the Lorenz?63 model, it is shown that the parameter sensitivities of the model results depend on the initial conditions. For the 2.5-layer shallow-water model used to simulate the Kuroshio large meander (KLM) south of Japan, the optimization strategy reveals that the prediction of the KLM path is insensitive to the uncertainties in the bottom friction coefficient, the interfacial friction coefficient, and the lateral friction coefficient. Rather, the KLM prediction is relatively sensitive to the uncertainties of the reduced gravity representing ocean stratification and the wind stress coefficient.
    • Download: (916.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Optimization Strategy for Identifying Parameter Sensitivity in Atmospheric and Oceanic Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4246552
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorWang, Qiang;Tang, Youmin;Dijkstra, Henk A.
    date accessioned2018-01-03T11:02:57Z
    date available2018-01-03T11:02:57Z
    date copyright5/11/2017 12:00:00 AM
    date issued2017
    identifier othermwr-d-16-0393.1.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4246552
    description abstractAbstractA new optimization strategy is proposed to identify the sensitivities of simulations of atmospheric and oceanic models to uncertain parameters. The strategy is based on a nonlinear optimization method that is able to estimate the maximum values of specific parameter sensitivity measures; meanwhile, it takes into account interactions among uncertain parameters. It is tested using the Lorenz?63 model and an intermediate complexity 2.5-layer shallow-water model of the North Pacific Ocean. For the Lorenz?63 model, it is shown that the parameter sensitivities of the model results depend on the initial conditions. For the 2.5-layer shallow-water model used to simulate the Kuroshio large meander (KLM) south of Japan, the optimization strategy reveals that the prediction of the KLM path is insensitive to the uncertainties in the bottom friction coefficient, the interfacial friction coefficient, and the lateral friction coefficient. Rather, the KLM prediction is relatively sensitive to the uncertainties of the reduced gravity representing ocean stratification and the wind stress coefficient.
    publisherAmerican Meteorological Society
    titleAn Optimization Strategy for Identifying Parameter Sensitivity in Atmospheric and Oceanic Models
    typeJournal Paper
    journal volume145
    journal issue8
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-16-0393.1
    journal fristpage3293
    journal lastpage3305
    treeMonthly Weather Review:;2017:;volume( 145 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian