YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Large Tank Evaluation of a GPS Wave Buoy for Wind Stress Measurements

    Source: Journal of Atmospheric and Oceanic Technology:;2017:;volume( 034 ):;issue: 006::page 1225
    Author:
    Suzuki, Naoya;Waseda, Takuji;Donelan, Mark A.;Kinoshita, Takeshi
    DOI: 10.1175/JTECH-D-16-0050.1
    Publisher: American Meteorological Society
    Abstract: AbstractThere exists considerable disagreement among the observed values of the drag coefficient CD. To develop a model of CD, the wind stress generally will be calculated from the eddy correlation method. A buoy is suitable to measure the wind stress in many sea surface conditions. However, the motion correction is very difficult because the anemometer measures the wind components, including the motion of the buoy. In this study, as a first approach, the motion of a prototype buoy system with a three-axis sonic anemometer and a six-axis motion sensor installed in the small-size GPS observation buoy was investigated. The wave tank is in the ocean engineering basin of the Institute of Industrial Science, University of Tokyo, Japan. The imposed conditions were wave periods from 1.1 to 2.5 s; wind speeds of 0, 2, and 5 m s?1; and the wave spectrum was either regular or irregular. The motion of the buoy was measured in 120 cases. For all the wave periods and without wind, the wind velocity measured by the sonic anemometer and the velocity of the anemometer motion calculated from the motion sensor data showed good agreement. Also, in the condition with wind speeds of 2 and 5 m s?1, the motion-corrected wind velocity, obtained by deducting the velocity of the anemometer motion from the wind velocity measured by the anemometer, yielded the true wind velocity with better-than-average (4.3%) accuracy. The friction velocity from corrected wind velocity components shows agreement with the friction velocity measured from a fixed sonic anemometer within expected intrinsic error. The buoy system is expected to be able to measure the wind stress in the field. The next stage is to do comprehensive field tests.
    • Download: (2.101Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Large Tank Evaluation of a GPS Wave Buoy for Wind Stress Measurements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4246524
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorSuzuki, Naoya;Waseda, Takuji;Donelan, Mark A.;Kinoshita, Takeshi
    date accessioned2018-01-03T11:02:49Z
    date available2018-01-03T11:02:49Z
    date copyright4/18/2017 12:00:00 AM
    date issued2017
    identifier otherjtech-d-16-0050.1.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4246524
    description abstractAbstractThere exists considerable disagreement among the observed values of the drag coefficient CD. To develop a model of CD, the wind stress generally will be calculated from the eddy correlation method. A buoy is suitable to measure the wind stress in many sea surface conditions. However, the motion correction is very difficult because the anemometer measures the wind components, including the motion of the buoy. In this study, as a first approach, the motion of a prototype buoy system with a three-axis sonic anemometer and a six-axis motion sensor installed in the small-size GPS observation buoy was investigated. The wave tank is in the ocean engineering basin of the Institute of Industrial Science, University of Tokyo, Japan. The imposed conditions were wave periods from 1.1 to 2.5 s; wind speeds of 0, 2, and 5 m s?1; and the wave spectrum was either regular or irregular. The motion of the buoy was measured in 120 cases. For all the wave periods and without wind, the wind velocity measured by the sonic anemometer and the velocity of the anemometer motion calculated from the motion sensor data showed good agreement. Also, in the condition with wind speeds of 2 and 5 m s?1, the motion-corrected wind velocity, obtained by deducting the velocity of the anemometer motion from the wind velocity measured by the anemometer, yielded the true wind velocity with better-than-average (4.3%) accuracy. The friction velocity from corrected wind velocity components shows agreement with the friction velocity measured from a fixed sonic anemometer within expected intrinsic error. The buoy system is expected to be able to measure the wind stress in the field. The next stage is to do comprehensive field tests.
    publisherAmerican Meteorological Society
    titleLarge Tank Evaluation of a GPS Wave Buoy for Wind Stress Measurements
    typeJournal Paper
    journal volume34
    journal issue6
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-16-0050.1
    journal fristpage1225
    journal lastpage1234
    treeJournal of Atmospheric and Oceanic Technology:;2017:;volume( 034 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian