YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bragg Scatter Detection by the WSR-88D. Part I: Algorithm Development

    Source: Journal of Atmospheric and Oceanic Technology:;2016:;volume( 034 ):;issue: 003::page 465
    Author:
    Richardson, Lindsey M.;Cunningham, Jeffrey G.;Zittel, W. David;Lee, Robert R.;Ice, Richard L.;Melnikov, Valery M.;Hoban, Nicole P.;Gebauer, Joshua G.
    DOI: 10.1175/JTECH-D-16-0030.1
    Publisher: American Meteorological Society
    Abstract: AbstractStudies have shown that echo returns from clear-air Bragg scatter (CABS) can be used to detect the height of the convective boundary layer and to assess the systematic differential reflectivity (ZDR) bias for a radar site. However, these studies did not use data from operational Weather Surveillance Radar-1988 Doppler (WSR-88D) or data from a large variety of sites. A new algorithm to automatically detect CABS from any operational WSR-88D with dual-polarization capability while excluding contamination from precipitation, biota, and ground clutter is presented here. Visual confirmation and tests related to the sounding parameters? relative humidity slope, refractivity gradient, and gradient Richardson number are used to assess the algorithm. Results show that automated detection of CABS in operational WSR-88D data gives useful ZDR bias information while omitting the majority of contaminated cases. Such an algorithm holds potential for radar calibration efforts and Bragg scatter studies in general.;AbstractStudies have shown that echo returns from clear-air Bragg scatter (CABS) can be used to detect the height of the convective boundary layer and to assess the systematic differential reflectivity (ZDR) bias for a radar site. However, these studies did not use data from operational Weather Surveillance Radar-1988 Doppler (WSR-88D) or data from a large variety of sites. A new algorithm to automatically detect CABS from any operational WSR-88D with dual-polarization capability while excluding contamination from precipitation, biota, and ground clutter is presented here. Visual confirmation and tests related to the sounding parameters? relative humidity slope, refractivity gradient, and gradient Richardson number are used to assess the algorithm. Results show that automated detection of CABS in operational WSR-88D data gives useful ZDR bias information while omitting the majority of contaminated cases. Such an algorithm holds potential for radar calibration efforts and Bragg scatter studies in general.
    • Download: (2.210Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bragg Scatter Detection by the WSR-88D. Part I: Algorithm Development

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4246480
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorRichardson, Lindsey M.;Cunningham, Jeffrey G.;Zittel, W. David;Lee, Robert R.;Ice, Richard L.;Melnikov, Valery M.;Hoban, Nicole P.;Gebauer, Joshua G.
    date accessioned2018-01-03T11:02:38Z
    date available2018-01-03T11:02:38Z
    date copyright12/16/2016 12:00:00 AM
    date issued2016
    identifier otherjtech-d-16-0030.1.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4246480
    description abstractAbstractStudies have shown that echo returns from clear-air Bragg scatter (CABS) can be used to detect the height of the convective boundary layer and to assess the systematic differential reflectivity (ZDR) bias for a radar site. However, these studies did not use data from operational Weather Surveillance Radar-1988 Doppler (WSR-88D) or data from a large variety of sites. A new algorithm to automatically detect CABS from any operational WSR-88D with dual-polarization capability while excluding contamination from precipitation, biota, and ground clutter is presented here. Visual confirmation and tests related to the sounding parameters? relative humidity slope, refractivity gradient, and gradient Richardson number are used to assess the algorithm. Results show that automated detection of CABS in operational WSR-88D data gives useful ZDR bias information while omitting the majority of contaminated cases. Such an algorithm holds potential for radar calibration efforts and Bragg scatter studies in general.;AbstractStudies have shown that echo returns from clear-air Bragg scatter (CABS) can be used to detect the height of the convective boundary layer and to assess the systematic differential reflectivity (ZDR) bias for a radar site. However, these studies did not use data from operational Weather Surveillance Radar-1988 Doppler (WSR-88D) or data from a large variety of sites. A new algorithm to automatically detect CABS from any operational WSR-88D with dual-polarization capability while excluding contamination from precipitation, biota, and ground clutter is presented here. Visual confirmation and tests related to the sounding parameters? relative humidity slope, refractivity gradient, and gradient Richardson number are used to assess the algorithm. Results show that automated detection of CABS in operational WSR-88D data gives useful ZDR bias information while omitting the majority of contaminated cases. Such an algorithm holds potential for radar calibration efforts and Bragg scatter studies in general.
    publisherAmerican Meteorological Society
    titleBragg Scatter Detection by the WSR-88D. Part I: Algorithm Development
    typeJournal Paper
    journal volume34
    journal issue3
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-16-0030.1
    journal fristpage465
    journal lastpage478
    treeJournal of Atmospheric and Oceanic Technology:;2016:;volume( 034 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian