YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Role of Surface Drag in Mesocyclone Intensification Leading to Tornadogenesis within an Idealized Supercell Simulation

    Source: Journal of the Atmospheric Sciences:;2017:;Volume( 074 ):;issue: 009::page 3055
    Author:
    Roberts, Brett;Xue, Ming
    DOI: 10.1175/JAS-D-16-0364.1
    Publisher: American Meteorological Society
    Abstract: AbstractThe idealized supercell simulations in a previous study by Roberts et al. are further analyzed to clarify the physical mechanisms leading to differences in mesocyclone intensification between an experiment with surface friction applied to the full wind (FWFRIC) and an experiment with friction applied to the environmental wind only (EnvFRIC). The low-level mesocyclone intensifies rapidly during the 3 min preceding tornadogenesis in FWFRIC, while the intensification during the same period is much weaker in EnvFRIC, which fails to produce a tornado. To quantify the mechanisms responsible for this discrepancy in mesocyclone evolution, material circuits enclosing the low-level mesocyclone are initialized and traced back in time, and circulation budgets for these circuits are analyzed. The results show that in FWFRIC, surface drag directly generates a substantial proportion of the final circulation around the mesocyclone, especially below 1 km AGL; in EnvFRIC, circulation budgets indicate the mesocyclone circulation is overwhelmingly barotropic. It is proposed that the import of near-ground, frictionally generated vorticity into the low-level mesocyclone in FWFRIC is a key factor causing the intensification and lowering of the mesocyclone toward the ground, creating a large upward vertical pressure gradient force that leads to tornadogenesis. Similar circulation analyses are also performed for circuits enclosing the tornado at its genesis stage. The frictionally generated circulation component is found to contribute more than half of the final circulation for circuits enclosing the tornado vortex below 400 m AGL, and the frictional contribution decreases monotonically with the height of the final circuit.
    • Download: (14.91Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Role of Surface Drag in Mesocyclone Intensification Leading to Tornadogenesis within an Idealized Supercell Simulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4246476
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorRoberts, Brett;Xue, Ming
    date accessioned2018-01-03T11:02:37Z
    date available2018-01-03T11:02:37Z
    date copyright7/6/2017 12:00:00 AM
    date issued2017
    identifier otherjas-d-16-0364.1.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4246476
    description abstractAbstractThe idealized supercell simulations in a previous study by Roberts et al. are further analyzed to clarify the physical mechanisms leading to differences in mesocyclone intensification between an experiment with surface friction applied to the full wind (FWFRIC) and an experiment with friction applied to the environmental wind only (EnvFRIC). The low-level mesocyclone intensifies rapidly during the 3 min preceding tornadogenesis in FWFRIC, while the intensification during the same period is much weaker in EnvFRIC, which fails to produce a tornado. To quantify the mechanisms responsible for this discrepancy in mesocyclone evolution, material circuits enclosing the low-level mesocyclone are initialized and traced back in time, and circulation budgets for these circuits are analyzed. The results show that in FWFRIC, surface drag directly generates a substantial proportion of the final circulation around the mesocyclone, especially below 1 km AGL; in EnvFRIC, circulation budgets indicate the mesocyclone circulation is overwhelmingly barotropic. It is proposed that the import of near-ground, frictionally generated vorticity into the low-level mesocyclone in FWFRIC is a key factor causing the intensification and lowering of the mesocyclone toward the ground, creating a large upward vertical pressure gradient force that leads to tornadogenesis. Similar circulation analyses are also performed for circuits enclosing the tornado at its genesis stage. The frictionally generated circulation component is found to contribute more than half of the final circulation for circuits enclosing the tornado vortex below 400 m AGL, and the frictional contribution decreases monotonically with the height of the final circuit.
    publisherAmerican Meteorological Society
    titleThe Role of Surface Drag in Mesocyclone Intensification Leading to Tornadogenesis within an Idealized Supercell Simulation
    typeJournal Paper
    journal volume74
    journal issue9
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-16-0364.1
    journal fristpage3055
    journal lastpage3077
    treeJournal of the Atmospheric Sciences:;2017:;Volume( 074 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian