YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Submesoscale Dynamics in the Northern Gulf of Mexico. Part III: Lagrangian Implications

    Source: Journal of Physical Oceanography:;2017:;Volume( 047 ):;issue: 009::page 2361
    Author:
    Choi, Jun;Bracco, Annalisa;Barkan, Roy;Shchepetkin, Alexander F.;McWilliams, James C.;Molemaker, Jeroen M.
    DOI: 10.1175/JPO-D-17-0036.1
    Publisher: American Meteorological Society
    Abstract: AbstractFour numerical simulations are used to characterize the impact of submesoscale circulations on surface Lagrangian statistics in the northern Gulf of Mexico over 2 months, February and August, representative of winter and summer. The role of resolution and riverine forcing is explored focusing on surface waters in regions where the water column is deeper than 50 m. Whenever submesoscale circulations are present, the probability density functions (PDFs) of dynamical quantities such as vorticity and horizontal velocity divergence for Eulerian and Lagrangian fields differ, with particles preferentially mapping areas of elevated negative divergence and positive vorticity. The stronger the submesoscale circulations are, the more skewed the Lagrangian distributions become, with greater differences between Eulerian and Lagrangian PDFs. In winter, Lagrangian distributions are modestly impacted by the presence of the riverine outflow, while increasing the model resolution from submesoscale permitting to submesoscale resolving has a more profound impact. In summer, the presence of riverine-induced buoyancy gradients is the key to the development of submesoscale circulations and different Eulerian and Lagrangian PDFs. Finite-size Lyapunov exponents (FSLEs) are used to characterize lateral mixing rates. Whenever submesoscale circulations are resolved and riverine outflow is included, FSLEs slopes are broadly consistent with local stirring. Simulated slopes are close to ?0.5 and support a velocity field where the ageostrophic and frontogenetic components contribute stirring at scales between about 5 and 7 times the model resolution and 100 km. The robustness of Lagrangian statistics is further discussed in terms of their spatial and temporal variability and of the number of particles available.
    • Download: (3.535Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Submesoscale Dynamics in the Northern Gulf of Mexico. Part III: Lagrangian Implications

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4246393
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorChoi, Jun;Bracco, Annalisa;Barkan, Roy;Shchepetkin, Alexander F.;McWilliams, James C.;Molemaker, Jeroen M.
    date accessioned2018-01-03T11:02:18Z
    date available2018-01-03T11:02:18Z
    date copyright7/24/2017 12:00:00 AM
    date issued2017
    identifier otherjpo-d-17-0036.1.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4246393
    description abstractAbstractFour numerical simulations are used to characterize the impact of submesoscale circulations on surface Lagrangian statistics in the northern Gulf of Mexico over 2 months, February and August, representative of winter and summer. The role of resolution and riverine forcing is explored focusing on surface waters in regions where the water column is deeper than 50 m. Whenever submesoscale circulations are present, the probability density functions (PDFs) of dynamical quantities such as vorticity and horizontal velocity divergence for Eulerian and Lagrangian fields differ, with particles preferentially mapping areas of elevated negative divergence and positive vorticity. The stronger the submesoscale circulations are, the more skewed the Lagrangian distributions become, with greater differences between Eulerian and Lagrangian PDFs. In winter, Lagrangian distributions are modestly impacted by the presence of the riverine outflow, while increasing the model resolution from submesoscale permitting to submesoscale resolving has a more profound impact. In summer, the presence of riverine-induced buoyancy gradients is the key to the development of submesoscale circulations and different Eulerian and Lagrangian PDFs. Finite-size Lyapunov exponents (FSLEs) are used to characterize lateral mixing rates. Whenever submesoscale circulations are resolved and riverine outflow is included, FSLEs slopes are broadly consistent with local stirring. Simulated slopes are close to ?0.5 and support a velocity field where the ageostrophic and frontogenetic components contribute stirring at scales between about 5 and 7 times the model resolution and 100 km. The robustness of Lagrangian statistics is further discussed in terms of their spatial and temporal variability and of the number of particles available.
    publisherAmerican Meteorological Society
    titleSubmesoscale Dynamics in the Northern Gulf of Mexico. Part III: Lagrangian Implications
    typeJournal Paper
    journal volume47
    journal issue9
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-17-0036.1
    journal fristpage2361
    journal lastpage2376
    treeJournal of Physical Oceanography:;2017:;Volume( 047 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian