YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Generation of Upwelling Circulation under Downwelling-Favorable Wind within Bottom-Attached, Buoyant Coastal Currents

    Source: Journal of Physical Oceanography:;2017:;Volume( 047 ):;issue: 010::page 2499
    Author:
    Chen, Sih-Yu;Chen, Shih-Nan
    DOI: 10.1175/JPO-D-16-0271.1
    Publisher: American Meteorological Society
    Abstract: AbstractA two-dimensional modeling study by Moffat and Lentz recently reported that downwelling-favorable wind can induce cross-shore upwelling circulation within a bottom-attached, buoyant coastal current. Here, we extend the problem to three dimensions. The driving mechanism and the sensitivity for the upwelling circulation are studied, using a primitive equation ocean model and an analytical model. After the initial downwelling adjustment that steepens the isopycnals and compresses the coastal current, the cross-shore flow can switch to steady upwelling circulation. This reverse circulation coincides with a vertically well-mixed water column and persists until interrupted by the arrival of river plume bulge from upstream. During the upwelling phase, the ageostrophic cross-shore flow follows the Ekman balance. The sense of cross-shore circulation is governed by a dimensionless parameter, the shear ratio, which measures the relative size of geostrophic shear and velocity shear supported by the wind in the shallow-water limit. Upwelling circulation occurs when the shear ratio is greater than one. This condition represents that, near the surface, the wind-intensified pressure gradient exceeds the maximum possible Coriolis force associated with the wind-forced, alongshore flow. The resulting upwelling circulation acts to slump the isopycnals to restore the geostrophic balance. Therefore, within a coastal current, decreasing wind stress in fact strengthens the upwelling circulation, as a weaker wind produces a weaker shear and thus increases the imbalance. This inverse relation holds until the wind is too weak to mix the water column. Based on the analytical model, a regime classification for the cross-shore circulation under downwelling-favorable wind is proposed. An observational example is given.
    • Download: (2.094Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Generation of Upwelling Circulation under Downwelling-Favorable Wind within Bottom-Attached, Buoyant Coastal Currents

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4246375
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorChen, Sih-Yu;Chen, Shih-Nan
    date accessioned2018-01-03T11:02:12Z
    date available2018-01-03T11:02:12Z
    date copyright8/7/2017 12:00:00 AM
    date issued2017
    identifier otherjpo-d-16-0271.1.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4246375
    description abstractAbstractA two-dimensional modeling study by Moffat and Lentz recently reported that downwelling-favorable wind can induce cross-shore upwelling circulation within a bottom-attached, buoyant coastal current. Here, we extend the problem to three dimensions. The driving mechanism and the sensitivity for the upwelling circulation are studied, using a primitive equation ocean model and an analytical model. After the initial downwelling adjustment that steepens the isopycnals and compresses the coastal current, the cross-shore flow can switch to steady upwelling circulation. This reverse circulation coincides with a vertically well-mixed water column and persists until interrupted by the arrival of river plume bulge from upstream. During the upwelling phase, the ageostrophic cross-shore flow follows the Ekman balance. The sense of cross-shore circulation is governed by a dimensionless parameter, the shear ratio, which measures the relative size of geostrophic shear and velocity shear supported by the wind in the shallow-water limit. Upwelling circulation occurs when the shear ratio is greater than one. This condition represents that, near the surface, the wind-intensified pressure gradient exceeds the maximum possible Coriolis force associated with the wind-forced, alongshore flow. The resulting upwelling circulation acts to slump the isopycnals to restore the geostrophic balance. Therefore, within a coastal current, decreasing wind stress in fact strengthens the upwelling circulation, as a weaker wind produces a weaker shear and thus increases the imbalance. This inverse relation holds until the wind is too weak to mix the water column. Based on the analytical model, a regime classification for the cross-shore circulation under downwelling-favorable wind is proposed. An observational example is given.
    publisherAmerican Meteorological Society
    titleGeneration of Upwelling Circulation under Downwelling-Favorable Wind within Bottom-Attached, Buoyant Coastal Currents
    typeJournal Paper
    journal volume47
    journal issue10
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-16-0271.1
    journal fristpage2499
    journal lastpage2519
    treeJournal of Physical Oceanography:;2017:;Volume( 047 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian