YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Submesoscale Instabilities in Mesoscale Eddies

    Source: Journal of Physical Oceanography:;2017:;Volume( 047 ):;issue: 012::page 3061
    Author:
    Brannigan, Liam;Marshall, David P.;Naveira Garabato, Alberto C.;Nurser, A. J. George;Kaiser, Jan
    DOI: 10.1175/JPO-D-16-0178.1
    Publisher: American Meteorological Society
    Abstract: AbstractSubmesoscale processes have been extensively studied in observations and simulations of fronts. Recent idealized simulations show that submesoscale instabilities also occur in baroclinic mesoscale cyclones and anticyclones. The instabilities in the anticyclone grow faster and at coarser grid resolution than in the cyclone. The instabilities lead to larger restratification in the anticyclone than in the cyclone. The instabilities also lead to changes in the mean azimuthal jet around the anticyclone from 2-km resolution, but a similar effect only occurs in the cyclone at 0.25-km resolution. A numerical passive tracer experiment shows that submesoscale instabilities lead to deeper subduction in the interior of anticyclonic than cyclonic eddies because of outcropping isopycnals extending deeper into the thermocline in anticyclones. An energetic analysis suggests that both vertical shear production and vertical buoyancy fluxes are important in anticyclones but primarily vertical buoyancy fluxes occur in cyclones at these resolutions. The energy sources and sinks vary azimuthally around the eddies caused by the asymmetric effects of the Ekman buoyancy flux. Glider transects of a mesoscale anticyclone in the Tasman Sea show that water with low stratification and high oxygen concentrations is found in an anticyclone, in a manner that may be consistent with the model predictions for submesoscale subduction in mesoscale eddies.
    • Download: (4.105Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Submesoscale Instabilities in Mesoscale Eddies

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4246363
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorBrannigan, Liam;Marshall, David P.;Naveira Garabato, Alberto C.;Nurser, A. J. George;Kaiser, Jan
    date accessioned2018-01-03T11:02:09Z
    date available2018-01-03T11:02:09Z
    date copyright10/11/2017 12:00:00 AM
    date issued2017
    identifier otherjpo-d-16-0178.1.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4246363
    description abstractAbstractSubmesoscale processes have been extensively studied in observations and simulations of fronts. Recent idealized simulations show that submesoscale instabilities also occur in baroclinic mesoscale cyclones and anticyclones. The instabilities in the anticyclone grow faster and at coarser grid resolution than in the cyclone. The instabilities lead to larger restratification in the anticyclone than in the cyclone. The instabilities also lead to changes in the mean azimuthal jet around the anticyclone from 2-km resolution, but a similar effect only occurs in the cyclone at 0.25-km resolution. A numerical passive tracer experiment shows that submesoscale instabilities lead to deeper subduction in the interior of anticyclonic than cyclonic eddies because of outcropping isopycnals extending deeper into the thermocline in anticyclones. An energetic analysis suggests that both vertical shear production and vertical buoyancy fluxes are important in anticyclones but primarily vertical buoyancy fluxes occur in cyclones at these resolutions. The energy sources and sinks vary azimuthally around the eddies caused by the asymmetric effects of the Ekman buoyancy flux. Glider transects of a mesoscale anticyclone in the Tasman Sea show that water with low stratification and high oxygen concentrations is found in an anticyclone, in a manner that may be consistent with the model predictions for submesoscale subduction in mesoscale eddies.
    publisherAmerican Meteorological Society
    titleSubmesoscale Instabilities in Mesoscale Eddies
    typeJournal Paper
    journal volume47
    journal issue12
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-16-0178.1
    journal fristpage3061
    journal lastpage3085
    treeJournal of Physical Oceanography:;2017:;Volume( 047 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian