YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Benchmarking of a Physically Based Hydrologic Model

    Source: Journal of Hydrometeorology:;2017:;Volume( 018 ):;issue: 008::page 2215
    Author:
    Newman, Andrew J.;Mizukami, Naoki;Clark, Martyn P.;Wood, Andrew W.;Nijssen, Bart;Nearing, Grey
    DOI: 10.1175/JHM-D-16-0284.1
    Publisher: American Meteorological Society
    Abstract: AbstractThe concepts of model benchmarking, model agility, and large-sample hydrology are becoming more prevalent in hydrologic and land surface modeling. As modeling systems become more sophisticated, these concepts have the ability to help improve modeling capabilities and understanding. In this paper, their utility is demonstrated with an application of the physically based Variable Infiltration Capacity model (VIC). The authors implement VIC for a sample of 531 basins across the contiguous United States, incrementally increase model agility, and perform comparisons to a benchmark. The use of a large-sample set allows for statistically robust comparisons and subcategorization across hydroclimate conditions. Our benchmark is a calibrated, time-stepping, conceptual hydrologic model. This model is constrained by physical relationships such as the water balance, and it complements purely statistical benchmarks due to the increased physical realism and permits physically motivated benchmarking using metrics that relate one variable to another (e.g., runoff ratio). The authors find that increasing model agility along the parameter dimension, as measured by the number of model parameters available for calibration, does increase model performance for calibration and validation periods relative to less agile implementations. However, as agility increases, transferability decreases, even for a complex model such as VIC. The benchmark outperforms VIC in even the most agile case when evaluated across the entire basin set. However, VIC meets or exceeds benchmark performance in basins with high runoff ratios (greater than ~0.8), highlighting the ability of large-sample comparative hydrology to identify hydroclimatic performance variations.
    • Download: (1.351Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Benchmarking of a Physically Based Hydrologic Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4246325
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorNewman, Andrew J.;Mizukami, Naoki;Clark, Martyn P.;Wood, Andrew W.;Nijssen, Bart;Nearing, Grey
    date accessioned2018-01-03T11:02:01Z
    date available2018-01-03T11:02:01Z
    date copyright5/24/2017 12:00:00 AM
    date issued2017
    identifier otherjhm-d-16-0284.1.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4246325
    description abstractAbstractThe concepts of model benchmarking, model agility, and large-sample hydrology are becoming more prevalent in hydrologic and land surface modeling. As modeling systems become more sophisticated, these concepts have the ability to help improve modeling capabilities and understanding. In this paper, their utility is demonstrated with an application of the physically based Variable Infiltration Capacity model (VIC). The authors implement VIC for a sample of 531 basins across the contiguous United States, incrementally increase model agility, and perform comparisons to a benchmark. The use of a large-sample set allows for statistically robust comparisons and subcategorization across hydroclimate conditions. Our benchmark is a calibrated, time-stepping, conceptual hydrologic model. This model is constrained by physical relationships such as the water balance, and it complements purely statistical benchmarks due to the increased physical realism and permits physically motivated benchmarking using metrics that relate one variable to another (e.g., runoff ratio). The authors find that increasing model agility along the parameter dimension, as measured by the number of model parameters available for calibration, does increase model performance for calibration and validation periods relative to less agile implementations. However, as agility increases, transferability decreases, even for a complex model such as VIC. The benchmark outperforms VIC in even the most agile case when evaluated across the entire basin set. However, VIC meets or exceeds benchmark performance in basins with high runoff ratios (greater than ~0.8), highlighting the ability of large-sample comparative hydrology to identify hydroclimatic performance variations.
    publisherAmerican Meteorological Society
    titleBenchmarking of a Physically Based Hydrologic Model
    typeJournal Paper
    journal volume18
    journal issue8
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM-D-16-0284.1
    journal fristpage2215
    journal lastpage2225
    treeJournal of Hydrometeorology:;2017:;Volume( 018 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian