YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Untitled

    Source: Journal of Climate:;2017:;volume( 030 ):;issue: 023::page 9743
    Author:
    Zhang, Tao;Shao, Xiaolu;Li, Shuanglin
    DOI: 10.1175/JCLI-D-17-0360.1
    Publisher: American Meteorological Society
    Abstract: AbstractAn evaluation of El Niño?La Niña asymmetry is conducted in the two recent NCAR coupled models (CCSM4 and CESM1) sharing the same ocean component. Results show that two coupled models generally underestimate observed ENSO asymmetry, mainly owing to an overestimate of the cold SST anomaly during the La Niña phase. The weaker ENSO asymmetry corresponds to a cold bias in mean SST climatology that is more severe in CESM1 than in CCSM4, despite a better performance in simulating ENSO asymmetry in the former. Corresponding AMIP (CAM4 and CAM5) runs are examined to probe the origin of the weaker ENSO asymmetry in coupled models. The analysis reveals a stronger time mean zonal wind in AMIP models, favoring a cold bias in mean SST. The bias of the stronger mean wind, associated with changes in mean precipitation, is more significant in CAM5 than in CAM4. The simulated skewness of the interannual variability of zonal winds is weaker than observations but somewhat improved in CAM5 compared to CAM4, primarily resulting from a more westward shift of easterly wind anomalies tied to the displacement of precipitation anomalies during the cold phase. Wind-forced ocean GCM experiments confirm that the bias in AMIP model winds can weaken ENSO asymmetry, with the contribution from the wind interannual variability being larger than from the mean winds. This demonstrates that the bias in ENSO asymmetry in coupled models can be traced back to the bias in the stand-alone atmosphere models to a large extent. The results pinpoint a pathway to reduce the bias in ENSO asymmetry in coupled models.
    • Download: (3.816Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4246271
    Collections
    • Journal of Climate

    Show full item record

    contributor authorZhang, Tao;Shao, Xiaolu;Li, Shuanglin
    date accessioned2018-01-03T11:01:49Z
    date available2018-01-03T11:01:49Z
    date copyright9/6/2017 12:00:00 AM
    date issued2017
    identifier otherjcli-d-17-0360.1.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4246271
    description abstractAbstractAn evaluation of El Niño?La Niña asymmetry is conducted in the two recent NCAR coupled models (CCSM4 and CESM1) sharing the same ocean component. Results show that two coupled models generally underestimate observed ENSO asymmetry, mainly owing to an overestimate of the cold SST anomaly during the La Niña phase. The weaker ENSO asymmetry corresponds to a cold bias in mean SST climatology that is more severe in CESM1 than in CCSM4, despite a better performance in simulating ENSO asymmetry in the former. Corresponding AMIP (CAM4 and CAM5) runs are examined to probe the origin of the weaker ENSO asymmetry in coupled models. The analysis reveals a stronger time mean zonal wind in AMIP models, favoring a cold bias in mean SST. The bias of the stronger mean wind, associated with changes in mean precipitation, is more significant in CAM5 than in CAM4. The simulated skewness of the interannual variability of zonal winds is weaker than observations but somewhat improved in CAM5 compared to CAM4, primarily resulting from a more westward shift of easterly wind anomalies tied to the displacement of precipitation anomalies during the cold phase. Wind-forced ocean GCM experiments confirm that the bias in AMIP model winds can weaken ENSO asymmetry, with the contribution from the wind interannual variability being larger than from the mean winds. This demonstrates that the bias in ENSO asymmetry in coupled models can be traced back to the bias in the stand-alone atmosphere models to a large extent. The results pinpoint a pathway to reduce the bias in ENSO asymmetry in coupled models.
    publisherAmerican Meteorological Society
    typeJournal Paper
    journal volume30
    journal issue23
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-17-0360.1
    journal fristpage9743
    journal lastpage9762
    treeJournal of Climate:;2017:;volume( 030 ):;issue: 023
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian