YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Contributions of Climate Feedbacks to Changes in Atmospheric Circulation

    Source: Journal of Climate:;2017:;volume( 030 ):;issue: 022::page 9097
    Author:
    Ceppi, Paulo;Shepherd, Theodore G.
    DOI: 10.1175/JCLI-D-17-0189.1
    Publisher: American Meteorological Society
    Abstract: AbstractThe projected response of the atmospheric circulation to the radiative changes induced by CO2 forcing and climate feedbacks is currently uncertain. In this modeling study, the impact of CO2-induced climate feedbacks on changes in jet latitude and speed is assessed by imposing surface albedo, cloud, and water vapor feedbacks as if they were forcings in two climate models, CAM4 and ECHAM6. The jet response to radiative feedbacks can be broadly interpreted through changes in midlatitude baroclinicity. Clouds enhance baroclinicity, favoring a strengthened, poleward-shifted jet; this is mitigated by surface albedo changes, which have the opposite effect on baroclinicity and the jet, while water vapor has opposing effects on upper- and lower-level baroclinicity with little net impact on the jet. Large differences between the CAM4 and ECHAM6 responses illustrate how model uncertainty in radiative feedbacks causes a large spread in the baroclinicity response to CO2 forcing. Across the CMIP5 models, differences in shortwave feedbacks by clouds and albedo are a dominant contribution to this spread. Forcing CAM4 with shortwave cloud and albedo feedbacks from a representative set of CMIP5 models yields a wide range of jet responses that strongly correlate with the meridional gradient of the anomalous shortwave heating and the associated baroclinicity response. Differences in shortwave feedbacks statistically explain about 50% of the intermodel spread in CMIP5 jet shifts for the set of models used, demonstrating the importance of constraining radiative feedbacks for accurate projections of circulation changes.
    • Download: (3.012Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Contributions of Climate Feedbacks to Changes in Atmospheric Circulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4246250
    Collections
    • Journal of Climate

    Show full item record

    contributor authorCeppi, Paulo;Shepherd, Theodore G.
    date accessioned2018-01-03T11:01:43Z
    date available2018-01-03T11:01:43Z
    date copyright8/15/2017 12:00:00 AM
    date issued2017
    identifier otherjcli-d-17-0189.1.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4246250
    description abstractAbstractThe projected response of the atmospheric circulation to the radiative changes induced by CO2 forcing and climate feedbacks is currently uncertain. In this modeling study, the impact of CO2-induced climate feedbacks on changes in jet latitude and speed is assessed by imposing surface albedo, cloud, and water vapor feedbacks as if they were forcings in two climate models, CAM4 and ECHAM6. The jet response to radiative feedbacks can be broadly interpreted through changes in midlatitude baroclinicity. Clouds enhance baroclinicity, favoring a strengthened, poleward-shifted jet; this is mitigated by surface albedo changes, which have the opposite effect on baroclinicity and the jet, while water vapor has opposing effects on upper- and lower-level baroclinicity with little net impact on the jet. Large differences between the CAM4 and ECHAM6 responses illustrate how model uncertainty in radiative feedbacks causes a large spread in the baroclinicity response to CO2 forcing. Across the CMIP5 models, differences in shortwave feedbacks by clouds and albedo are a dominant contribution to this spread. Forcing CAM4 with shortwave cloud and albedo feedbacks from a representative set of CMIP5 models yields a wide range of jet responses that strongly correlate with the meridional gradient of the anomalous shortwave heating and the associated baroclinicity response. Differences in shortwave feedbacks statistically explain about 50% of the intermodel spread in CMIP5 jet shifts for the set of models used, demonstrating the importance of constraining radiative feedbacks for accurate projections of circulation changes.
    publisherAmerican Meteorological Society
    titleContributions of Climate Feedbacks to Changes in Atmospheric Circulation
    typeJournal Paper
    journal volume30
    journal issue22
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-17-0189.1
    journal fristpage9097
    journal lastpage9118
    treeJournal of Climate:;2017:;volume( 030 ):;issue: 022
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian