YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Double and Single ITCZs with and without Clouds

    Source: Journal of Climate:;2017:;volume( 030 ):;issue: 022::page 9147
    Author:
    Popp, Max;Silvers, Levi G.
    DOI: 10.1175/JCLI-D-17-0062.1
    Publisher: American Meteorological Society
    Abstract: AbstractA major bias in tropical precipitation over the Pacific in climate simulations stems from the models? tendency to produce two strong distinct intertropical convergence zones (ITCZs) too often. Several mechanisms have been proposed that may contribute to the emergence of two ITCZs, but current theories cannot fully explain the bias. This problem is tackled by investigating how the interaction between atmospheric cloud-radiative effects (ACREs) and the large-scale circulation influences the ITCZ position in an atmospheric general circulation model. Simulations are performed in an idealized aquaplanet setup and the longwave and shortwave ACREs are turned off individually or jointly. The low-level moist static energy (MSE) is shown to be a good predictor of the ITCZ position. Therefore, a mechanism is proposed that explains the changes in MSE and thus ITCZ position due to ACREs consistently across simulations. The mechanism implies that the ITCZ moves equatorward if the Hadley circulation strengthens because of the increased upgradient advection of low-level MSE off the equator. The longwave ACRE increases the meridional heating gradient in the tropics and as a response the Hadley circulation strengthens and the ITCZ moves equatorward. The shortwave ACRE has the opposite effect. The total ACRE pulls the ITCZ equatorward. This mechanism is discussed in other frameworks involving convective available potential energy, gross moist stability, and the energy flux equator. It is thus shown that the response of the large-scale circulation to the shortwave and longwave ACREs is a fundamental driver of changes in the ITCZ position.
    • Download: (2.081Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Double and Single ITCZs with and without Clouds

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4246218
    Collections
    • Journal of Climate

    Show full item record

    contributor authorPopp, Max;Silvers, Levi G.
    date accessioned2018-01-03T11:01:37Z
    date available2018-01-03T11:01:37Z
    date copyright8/21/2017 12:00:00 AM
    date issued2017
    identifier otherjcli-d-17-0062.1.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4246218
    description abstractAbstractA major bias in tropical precipitation over the Pacific in climate simulations stems from the models? tendency to produce two strong distinct intertropical convergence zones (ITCZs) too often. Several mechanisms have been proposed that may contribute to the emergence of two ITCZs, but current theories cannot fully explain the bias. This problem is tackled by investigating how the interaction between atmospheric cloud-radiative effects (ACREs) and the large-scale circulation influences the ITCZ position in an atmospheric general circulation model. Simulations are performed in an idealized aquaplanet setup and the longwave and shortwave ACREs are turned off individually or jointly. The low-level moist static energy (MSE) is shown to be a good predictor of the ITCZ position. Therefore, a mechanism is proposed that explains the changes in MSE and thus ITCZ position due to ACREs consistently across simulations. The mechanism implies that the ITCZ moves equatorward if the Hadley circulation strengthens because of the increased upgradient advection of low-level MSE off the equator. The longwave ACRE increases the meridional heating gradient in the tropics and as a response the Hadley circulation strengthens and the ITCZ moves equatorward. The shortwave ACRE has the opposite effect. The total ACRE pulls the ITCZ equatorward. This mechanism is discussed in other frameworks involving convective available potential energy, gross moist stability, and the energy flux equator. It is thus shown that the response of the large-scale circulation to the shortwave and longwave ACREs is a fundamental driver of changes in the ITCZ position.
    publisherAmerican Meteorological Society
    titleDouble and Single ITCZs with and without Clouds
    typeJournal Paper
    journal volume30
    journal issue22
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-17-0062.1
    journal fristpage9147
    journal lastpage9166
    treeJournal of Climate:;2017:;volume( 030 ):;issue: 022
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian