YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Seasonal Cycles of Tropical Cyclone Potential Intensity

    Source: Journal of Climate:;2017:;volume( 030 ):;issue: 016::page 6085
    Author:
    Gilford, Daniel M.;Solomon, Susan;Emanuel, Kerry A.
    DOI: 10.1175/JCLI-D-16-0827.1
    Publisher: American Meteorological Society
    Abstract: AbstractRecent studies have investigated trends and interannual variability in the potential intensity (PI) of tropical cyclones (TCs), but relatively few have examined TC PI seasonality or its controlling factors. Potential intensity is a function of environmental conditions that influence thermodynamic atmosphere?ocean disequilibrium and the TC thermodynamic efficiency?primarily sea surface temperatures and the TC outflow temperatures?and therefore varies spatially across ocean basins with different ambient conditions. This study analyzes the seasonal cycles of TC PI in each main development region using reanalysis data from 1980 to 2013. TC outflow in the western North Pacific (WNP) region is found above the tropopause throughout the seasonal cycle. Consequently, WNP TC PI is strongly influenced by the seasonal cycle of lower-stratospheric temperatures, which act to damp its seasonal variability and thereby permit powerful TCs any time during the year. In contrast, the other main development regions (such as the North Atlantic) exhibit outflow levels in the troposphere through much of the year, except during their peak seasons. Mathematical decomposition of the TC PI metric shows that outflow temperatures damp WNP TC PI seasonality through thermodynamic efficiency by a quarter to a third, whereas disequilibrium between SSTs and the troposphere drives 72%?85% of the seasonal amplitude in the other ocean basins. Strong linkages between disequilibrium and TC PI seasonality in these basins result in thermodynamic support for powerful TCs only during their peak seasons. Decomposition also shows that the stratospheric influence on outflow temperatures in the WNP delays the peak month of TC PI by a month.
    • Download: (2.023Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Seasonal Cycles of Tropical Cyclone Potential Intensity

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4246162
    Collections
    • Journal of Climate

    Show full item record

    contributor authorGilford, Daniel M.;Solomon, Susan;Emanuel, Kerry A.
    date accessioned2018-01-03T11:01:21Z
    date available2018-01-03T11:01:21Z
    date copyright5/1/2017 12:00:00 AM
    date issued2017
    identifier otherjcli-d-16-0827.1.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4246162
    description abstractAbstractRecent studies have investigated trends and interannual variability in the potential intensity (PI) of tropical cyclones (TCs), but relatively few have examined TC PI seasonality or its controlling factors. Potential intensity is a function of environmental conditions that influence thermodynamic atmosphere?ocean disequilibrium and the TC thermodynamic efficiency?primarily sea surface temperatures and the TC outflow temperatures?and therefore varies spatially across ocean basins with different ambient conditions. This study analyzes the seasonal cycles of TC PI in each main development region using reanalysis data from 1980 to 2013. TC outflow in the western North Pacific (WNP) region is found above the tropopause throughout the seasonal cycle. Consequently, WNP TC PI is strongly influenced by the seasonal cycle of lower-stratospheric temperatures, which act to damp its seasonal variability and thereby permit powerful TCs any time during the year. In contrast, the other main development regions (such as the North Atlantic) exhibit outflow levels in the troposphere through much of the year, except during their peak seasons. Mathematical decomposition of the TC PI metric shows that outflow temperatures damp WNP TC PI seasonality through thermodynamic efficiency by a quarter to a third, whereas disequilibrium between SSTs and the troposphere drives 72%?85% of the seasonal amplitude in the other ocean basins. Strong linkages between disequilibrium and TC PI seasonality in these basins result in thermodynamic support for powerful TCs only during their peak seasons. Decomposition also shows that the stratospheric influence on outflow temperatures in the WNP delays the peak month of TC PI by a month.
    publisherAmerican Meteorological Society
    titleOn the Seasonal Cycles of Tropical Cyclone Potential Intensity
    typeJournal Paper
    journal volume30
    journal issue16
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-16-0827.1
    journal fristpage6085
    journal lastpage6096
    treeJournal of Climate:;2017:;volume( 030 ):;issue: 016
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian