YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Seasonality of Arctic Black Carbon

    Source: Journal of Climate:;2017:;volume( 030 ):;issue: 012::page 4429
    Author:
    Shen, Zhaoyi;Ming, Yi;Horowitz, Larry W.;Ramaswamy, V.;Lin, Meiyun
    DOI: 10.1175/JCLI-D-16-0580.1
    Publisher: American Meteorological Society
    Abstract: AbstractArctic haze has a distinct seasonal cycle with peak concentrations in winter but pristine conditions in summer. It is demonstrated that the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric general circulation model (AM3) can reproduce the observed seasonality of Arctic black carbon (BC), an important component of Arctic haze. The model is used to study how large-scale circulation and removal drive the seasonal cycle of Arctic BC. It is found that despite large seasonal shifts in the general circulation pattern, the transport of BC into the Arctic varies little throughout the year. The seasonal cycle of Arctic BC is attributed mostly to variations in the controlling factors of wet removal, namely the hydrophilic fraction of BC and wet deposition efficiency of hydrophilic BC. Specifically, a confluence of low hydrophilic fraction and weak wet deposition, owing to slower aging process and less efficient mixed-phase cloud scavenging, respectively, is responsible for the wintertime peak of BC. The transition to low BC in summer is the consequence of a gradual increase in the wet deposition efficiency, whereas the increase of BC in late fall can be explained by a sharp decrease in the hydrophilic fraction. The results presented here suggest that future changes in the aging and wet deposition processes can potentially alter the concentrations of Arctic aerosols and their climate effects.
    • Download: (875.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Seasonality of Arctic Black Carbon

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4246061
    Collections
    • Journal of Climate

    Show full item record

    contributor authorShen, Zhaoyi;Ming, Yi;Horowitz, Larry W.;Ramaswamy, V.;Lin, Meiyun
    date accessioned2018-01-03T11:00:56Z
    date available2018-01-03T11:00:56Z
    date copyright3/20/2017 12:00:00 AM
    date issued2017
    identifier otherjcli-d-16-0580.1.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4246061
    description abstractAbstractArctic haze has a distinct seasonal cycle with peak concentrations in winter but pristine conditions in summer. It is demonstrated that the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric general circulation model (AM3) can reproduce the observed seasonality of Arctic black carbon (BC), an important component of Arctic haze. The model is used to study how large-scale circulation and removal drive the seasonal cycle of Arctic BC. It is found that despite large seasonal shifts in the general circulation pattern, the transport of BC into the Arctic varies little throughout the year. The seasonal cycle of Arctic BC is attributed mostly to variations in the controlling factors of wet removal, namely the hydrophilic fraction of BC and wet deposition efficiency of hydrophilic BC. Specifically, a confluence of low hydrophilic fraction and weak wet deposition, owing to slower aging process and less efficient mixed-phase cloud scavenging, respectively, is responsible for the wintertime peak of BC. The transition to low BC in summer is the consequence of a gradual increase in the wet deposition efficiency, whereas the increase of BC in late fall can be explained by a sharp decrease in the hydrophilic fraction. The results presented here suggest that future changes in the aging and wet deposition processes can potentially alter the concentrations of Arctic aerosols and their climate effects.
    publisherAmerican Meteorological Society
    titleOn the Seasonality of Arctic Black Carbon
    typeJournal Paper
    journal volume30
    journal issue12
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-16-0580.1
    journal fristpage4429
    journal lastpage4441
    treeJournal of Climate:;2017:;volume( 030 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian