YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Thermocline Fluctuations in the Equatorial Pacific Related to the Two Types of El Niño Events

    Source: Journal of Climate:;2017:;volume( 030 ):;issue: 017::page 6611
    Author:
    Xu, Kang;Huang, Rui Xin;Wang, Weiqiang;Zhu, Congwen;Lu, Riyu
    DOI: 10.1175/JCLI-D-16-0291.1
    Publisher: American Meteorological Society
    Abstract: AbstractThe interannual fluctuations of the equatorial thermocline are usually associated with El Niño activity, but the linkage between the thermocline modes and El Niño is still under debate. In the present study, a mode function decomposition method is applied to the equatorial Pacific thermocline, and the results show that the first two dominant modes (M1 and M2) identify two distinct characteristics of the equatorial Pacific thermocline. The M1 reflects a basinwide zonally tilted thermocline related to the eastern Pacific (EP) El Niño, with shoaling (deepening) in the western (eastern) equatorial Pacific. The M2 represents the central Pacific (CP) El Niño, characterized by a V-shaped equatorial Pacific thermocline (i.e., deep in the central equatorial Pacific and shallow on both the western and eastern boundaries). Furthermore, both modes are stable and significant on the interannual time scale, and manifest as the major feature of the thermocline fluctuations associated with the two types of El Niño events. As good proxies of EP and CP El Niño events, thermocline-based indices clearly reveal the inherent characteristics of subsurface ocean responses during the evolution of El Niño events, which are characterized by the remarkable zonal eastward propagation of equatorial subsurface ocean temperature anomalies, particularly during the CP El Niño. Further analysis of the mixed layer heat budget suggests that the air?sea interactions determine the establishment and development stages of the CP El Niño, while the thermocline feedback is vital for its further development. These results highlight the key influence of equatorial Pacific thermocline fluctuations in conjunction with the air?sea interactions, on the CP El Niño.
    • Download: (1.767Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Thermocline Fluctuations in the Equatorial Pacific Related to the Two Types of El Niño Events

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245933
    Collections
    • Journal of Climate

    Show full item record

    contributor authorXu, Kang;Huang, Rui Xin;Wang, Weiqiang;Zhu, Congwen;Lu, Riyu
    date accessioned2018-01-03T11:00:21Z
    date available2018-01-03T11:00:21Z
    date copyright5/22/2017 12:00:00 AM
    date issued2017
    identifier otherjcli-d-16-0291.1.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245933
    description abstractAbstractThe interannual fluctuations of the equatorial thermocline are usually associated with El Niño activity, but the linkage between the thermocline modes and El Niño is still under debate. In the present study, a mode function decomposition method is applied to the equatorial Pacific thermocline, and the results show that the first two dominant modes (M1 and M2) identify two distinct characteristics of the equatorial Pacific thermocline. The M1 reflects a basinwide zonally tilted thermocline related to the eastern Pacific (EP) El Niño, with shoaling (deepening) in the western (eastern) equatorial Pacific. The M2 represents the central Pacific (CP) El Niño, characterized by a V-shaped equatorial Pacific thermocline (i.e., deep in the central equatorial Pacific and shallow on both the western and eastern boundaries). Furthermore, both modes are stable and significant on the interannual time scale, and manifest as the major feature of the thermocline fluctuations associated with the two types of El Niño events. As good proxies of EP and CP El Niño events, thermocline-based indices clearly reveal the inherent characteristics of subsurface ocean responses during the evolution of El Niño events, which are characterized by the remarkable zonal eastward propagation of equatorial subsurface ocean temperature anomalies, particularly during the CP El Niño. Further analysis of the mixed layer heat budget suggests that the air?sea interactions determine the establishment and development stages of the CP El Niño, while the thermocline feedback is vital for its further development. These results highlight the key influence of equatorial Pacific thermocline fluctuations in conjunction with the air?sea interactions, on the CP El Niño.
    publisherAmerican Meteorological Society
    titleThermocline Fluctuations in the Equatorial Pacific Related to the Two Types of El Niño Events
    typeJournal Paper
    journal volume30
    journal issue17
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-16-0291.1
    journal fristpage6611
    treeJournal of Climate:;2017:;volume( 030 ):;issue: 017
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian