YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Untitled

    Source: Journal of Climate:;2016:;volume( 030 ):;issue: 008::page 2785
    Author:
    Ruprich-Robert, Yohan;Msadek, Rym;Castruccio, Frederic;Yeager, Stephen;Delworth, Tom;Danabasoglu, Gokhan
    DOI: 10.1175/JCLI-D-16-0127.1
    Publisher: American Meteorological Society
    Abstract: AbstractThe climate impacts of the observed Atlantic multidecadal variability (AMV) are investigated using the GFDL CM2.1 and the NCAR CESM1 coupled climate models. The model North Atlantic sea surface temperatures are restored to fixed anomalies corresponding to an estimate of the internally driven component of the observed AMV. Both models show that during boreal summer the AMV alters the Walker circulation and generates precipitation anomalies over the whole tropical belt. A warm phase of the AMV yields reduced precipitation over the western United States, drier conditions over the Mediterranean basin, and wetter conditions over northern Europe. During boreal winter, the AMV modulates by a factor of about 2 the frequency of occurrence of El Niño and La Niña events. This response is associated with anomalies over the Pacific that project onto the interdecadal Pacific oscillation pattern (i.e., Pacific decadal oscillation?like anomalies in the Northern Hemisphere and a symmetrical pattern in the Southern Hemisphere). This winter response is a lagged adjustment of the Pacific Ocean to the AMV forcing in summer. Most of the simulated global-scale impacts are driven by the tropical part of the AMV, except for the winter North Atlantic Oscillation?like response over the North Atlantic?European region, which is driven by both the subpolar and tropical parts of the AMV. The teleconnections between the Pacific and Atlantic basins alter the direct North Atlantic local response to the AMV, which highlights the importance of using a global coupled framework to investigate the climate impacts of the AMV. The similarity of the two model responses gives confidence that impacts described in this paper are robust.
    • Download: (16.62Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245901
    Collections
    • Journal of Climate

    Show full item record

    contributor authorRuprich-Robert, Yohan;Msadek, Rym;Castruccio, Frederic;Yeager, Stephen;Delworth, Tom;Danabasoglu, Gokhan
    date accessioned2018-01-03T11:00:11Z
    date available2018-01-03T11:00:11Z
    date copyright12/27/2016 12:00:00 AM
    date issued2016
    identifier otherjcli-d-16-0127.1.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245901
    description abstractAbstractThe climate impacts of the observed Atlantic multidecadal variability (AMV) are investigated using the GFDL CM2.1 and the NCAR CESM1 coupled climate models. The model North Atlantic sea surface temperatures are restored to fixed anomalies corresponding to an estimate of the internally driven component of the observed AMV. Both models show that during boreal summer the AMV alters the Walker circulation and generates precipitation anomalies over the whole tropical belt. A warm phase of the AMV yields reduced precipitation over the western United States, drier conditions over the Mediterranean basin, and wetter conditions over northern Europe. During boreal winter, the AMV modulates by a factor of about 2 the frequency of occurrence of El Niño and La Niña events. This response is associated with anomalies over the Pacific that project onto the interdecadal Pacific oscillation pattern (i.e., Pacific decadal oscillation?like anomalies in the Northern Hemisphere and a symmetrical pattern in the Southern Hemisphere). This winter response is a lagged adjustment of the Pacific Ocean to the AMV forcing in summer. Most of the simulated global-scale impacts are driven by the tropical part of the AMV, except for the winter North Atlantic Oscillation?like response over the North Atlantic?European region, which is driven by both the subpolar and tropical parts of the AMV. The teleconnections between the Pacific and Atlantic basins alter the direct North Atlantic local response to the AMV, which highlights the importance of using a global coupled framework to investigate the climate impacts of the AMV. The similarity of the two model responses gives confidence that impacts described in this paper are robust.
    publisherAmerican Meteorological Society
    typeJournal Paper
    journal volume30
    journal issue8
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-16-0127.1
    journal fristpage2785
    journal lastpage2810
    treeJournal of Climate:;2016:;volume( 030 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian