YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Untitled

    Source: Journal of Atmospheric and Oceanic Technology:;2017:;volume( 034 ):;issue: 009::page 2059
    Author:
    Park, S.-G.;Kim, Hae-Lim;Ham, Young-Woong;Jung, Sung-Hwa
    DOI: 10.1175/JTECH-D-16-0256.1
    Publisher: American Meteorological Society
    Abstract: AbstractThe performance of the OTT second-generation Particle Size Velocity (PARSIVEL2) laser weather sensor is evaluated by comparing it with a collocated two-dimensional video disdrometer (2DVD) and rain gauges using data collected over a total of 36 rain events. A comparison of raindrop size distributions (DSDs) between the 2DVD and two PARSIVEL2 reveals good agreement for weak rainfall rates below approximately 10 mm h?1 and for midsize drops with diameters between 0.6 and 4.0 mm irrespective of rainfall rates, whereas the PARSIVEL2 produces overestimations of large drops with diameters above 4 mm during heavy rainfall above approximately 20 mm h?1. The resultant DSD parameters of the PARSIVEL2 present overestimations of the mean diameter Dm in the normalized gamma function and the maximum drop diameter Dmax, and underestimations of the intercept parameter Nw and total number of drops NT. Furthermore, how the characteristics of DSDs from the PARSIVEL2 affect the polarimetric radar variables, such as differential reflectivity ZDR and specific differential phase KDP, is examined, as well as how these characteristics affect empirical relations required in radar hydrometeorological applications such as quantitative rainfall estimations. Based on these examinations, it can be concluded that the OTT PARSIVEL2 still produces overestimations of large drops and underestimations of small drops during heavy rainfall, similar to older models of PARSIVEL, despite significant improvements to the PARSIVEL2 system, and furthermore that the uses of PARSIVEL2 measurements can act as a source of error in radar hydrometeorological applications such as radar rainfall estimations.
    • Download: (3.644Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245833
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorPark, S.-G.;Kim, Hae-Lim;Ham, Young-Woong;Jung, Sung-Hwa
    date accessioned2018-01-03T10:59:52Z
    date available2018-01-03T10:59:52Z
    date copyright7/19/2017 12:00:00 AM
    date issued2017
    identifier otherjtech-d-16-0256.1.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245833
    description abstractAbstractThe performance of the OTT second-generation Particle Size Velocity (PARSIVEL2) laser weather sensor is evaluated by comparing it with a collocated two-dimensional video disdrometer (2DVD) and rain gauges using data collected over a total of 36 rain events. A comparison of raindrop size distributions (DSDs) between the 2DVD and two PARSIVEL2 reveals good agreement for weak rainfall rates below approximately 10 mm h?1 and for midsize drops with diameters between 0.6 and 4.0 mm irrespective of rainfall rates, whereas the PARSIVEL2 produces overestimations of large drops with diameters above 4 mm during heavy rainfall above approximately 20 mm h?1. The resultant DSD parameters of the PARSIVEL2 present overestimations of the mean diameter Dm in the normalized gamma function and the maximum drop diameter Dmax, and underestimations of the intercept parameter Nw and total number of drops NT. Furthermore, how the characteristics of DSDs from the PARSIVEL2 affect the polarimetric radar variables, such as differential reflectivity ZDR and specific differential phase KDP, is examined, as well as how these characteristics affect empirical relations required in radar hydrometeorological applications such as quantitative rainfall estimations. Based on these examinations, it can be concluded that the OTT PARSIVEL2 still produces overestimations of large drops and underestimations of small drops during heavy rainfall, similar to older models of PARSIVEL, despite significant improvements to the PARSIVEL2 system, and furthermore that the uses of PARSIVEL2 measurements can act as a source of error in radar hydrometeorological applications such as radar rainfall estimations.
    publisherAmerican Meteorological Society
    typeJournal Paper
    journal volume34
    journal issue9
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-16-0256.1
    journal fristpage2059
    journal lastpage2082
    treeJournal of Atmospheric and Oceanic Technology:;2017:;volume( 034 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian