YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    3D Numerical Study on the Growth and Coalescence of Pre-existing Flaws in Rocklike Materials Subjected to Uniaxial Compression

    Source: International Journal of Geomechanics:;2016:;Volume ( 016 ):;issue: 004
    Author:
    Xiao-Ping Zhou
    ,
    Jing Bi
    DOI: 10.1061/(ASCE)GM.1943-5622.0000565
    Publisher: American Society of Civil Engineers
    Abstract: A novel, meshless numerical method, called general particle dynamics (GPD), is proposed to simulate the initiation, propagation, and coalescence of three-dimensional (3D), pre-existing penetrating and embedded flaws as well as size effects and large deformations of rock materials. On the basis of the nonlinear unified strength criterion, an elastic–brittle–plastic damage model was developed to reflect the initiation, growth, and coalescence of the 3D flaws and the macrofailure of rocklike materials by tracing the propagation of the cracks. Then, growth paths of cracks were captured through the sequence of such damaged particles. In this paper, the GPD code is applied to simulate the macrofailure, large deformation, and size effects of the heterogeneous rocklike materials. The present numerical simulations focus on the effects of sample sizes, the nonoverlapping length and types of flaws on the failure, and the complete stress–strain curves of the rocklike materials. The initiation, propagation, and coalescence processes of the wing cracks, the antiwing cracks, the oblique secondary cracks, the out-of-plane shear cracks, and the quasi-coplanar shear crack in a rocklike sample subjected to uniaxial compression is numerically simulated using GPD3D. The numerical results indicate that the nonoverlapping lengths and types of flaws significantly influence the coalescence types. The numerical results are in good agreement with the experimental results. It is proven that the GPD3D can adequately simulate the failure processes, large deformation, and size effects of the rocklike materials.
    • Download: (7.279Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      3D Numerical Study on the Growth and Coalescence of Pre-existing Flaws in Rocklike Materials Subjected to Uniaxial Compression

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245725
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorXiao-Ping Zhou
    contributor authorJing Bi
    date accessioned2017-12-30T13:06:34Z
    date available2017-12-30T13:06:34Z
    date issued2016
    identifier other%28ASCE%29GM.1943-5622.0000565.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245725
    description abstractA novel, meshless numerical method, called general particle dynamics (GPD), is proposed to simulate the initiation, propagation, and coalescence of three-dimensional (3D), pre-existing penetrating and embedded flaws as well as size effects and large deformations of rock materials. On the basis of the nonlinear unified strength criterion, an elastic–brittle–plastic damage model was developed to reflect the initiation, growth, and coalescence of the 3D flaws and the macrofailure of rocklike materials by tracing the propagation of the cracks. Then, growth paths of cracks were captured through the sequence of such damaged particles. In this paper, the GPD code is applied to simulate the macrofailure, large deformation, and size effects of the heterogeneous rocklike materials. The present numerical simulations focus on the effects of sample sizes, the nonoverlapping length and types of flaws on the failure, and the complete stress–strain curves of the rocklike materials. The initiation, propagation, and coalescence processes of the wing cracks, the antiwing cracks, the oblique secondary cracks, the out-of-plane shear cracks, and the quasi-coplanar shear crack in a rocklike sample subjected to uniaxial compression is numerically simulated using GPD3D. The numerical results indicate that the nonoverlapping lengths and types of flaws significantly influence the coalescence types. The numerical results are in good agreement with the experimental results. It is proven that the GPD3D can adequately simulate the failure processes, large deformation, and size effects of the rocklike materials.
    publisherAmerican Society of Civil Engineers
    title3D Numerical Study on the Growth and Coalescence of Pre-existing Flaws in Rocklike Materials Subjected to Uniaxial Compression
    typeJournal Paper
    journal volume16
    journal issue4
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0000565
    page04015096
    treeInternational Journal of Geomechanics:;2016:;Volume ( 016 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian