YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    3D Visualization-Based Ergonomic Risk Assessment and Work Modification Framework and Its Validation for a Lifting Task

    Source: Journal of Construction Engineering and Management:;2018:;Volume ( 144 ):;issue: 001
    Author:
    Xinming Li
    ,
    SangHyeok Han
    ,
    Mustafa Gül
    ,
    Mohamed Al-Hussein
    ,
    Marwan El-Rich
    DOI: 10.1061/(ASCE)CO.1943-7862.0001412
    Publisher: American Society of Civil Engineers
    Abstract: The construction manufacturing industry in North America has a disproportionately high number of lost-time injuries because of the high physical demand of the labor-intensive tasks it involves. It is thus essential to investigate the physical demands of body movement in the construction manufacturing workplace to proactively identify worker exposure to ergonomic risk. This paper proposes a methodology to use three-dimensional (3D) skeletal modeling to imitate human body movement in an actual construction manufacturing plant for ergonomic risk assessment of a workstation. The inputs for the creation of an accurate and reliable 3D model are also identified. Through 3D modeling, continuous human body motion data can be obtained (such as joint coordinates and joint angles) for risk assessment analysis using existing risk assessment algorithms. The presented framework enables risk evaluation by detecting awkward body postures and evaluating the handled force/load and frequency that cause ergonomic risks during manufacturing operations. The results of the analysis are expected to facilitate the development of modified work to the workstation, which will potentially reduce injuries and workers’ compensation insurance costs in the long term for construction manufacturers. The proposed framework can also be expanded to evaluate workstations in the design phase without the need for physical imitation by human subjects. In this paper, the proposed 3D visualization-based ergonomic risk assessment methodology is validated through an optical marker-based motion capture experiment for a lifting task in order to prove the feasibility and reliability of the framework. It is also compared to the traditional manual observation method. Three subjects are selected to conduct the experiment and three levels of comparison are completed: joint angles comparison, risk rating comparison for body segments, and Rapid Entire Body Assessment/Rapid Upper Limb Assessment (REBA/RULA) total risk rating and risk level comparison.
    • Download: (1.251Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      3D Visualization-Based Ergonomic Risk Assessment and Work Modification Framework and Its Validation for a Lifting Task

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245695
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorXinming Li
    contributor authorSangHyeok Han
    contributor authorMustafa Gül
    contributor authorMohamed Al-Hussein
    contributor authorMarwan El-Rich
    date accessioned2017-12-30T13:06:27Z
    date available2017-12-30T13:06:27Z
    date issued2018
    identifier other%28ASCE%29CO.1943-7862.0001412.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245695
    description abstractThe construction manufacturing industry in North America has a disproportionately high number of lost-time injuries because of the high physical demand of the labor-intensive tasks it involves. It is thus essential to investigate the physical demands of body movement in the construction manufacturing workplace to proactively identify worker exposure to ergonomic risk. This paper proposes a methodology to use three-dimensional (3D) skeletal modeling to imitate human body movement in an actual construction manufacturing plant for ergonomic risk assessment of a workstation. The inputs for the creation of an accurate and reliable 3D model are also identified. Through 3D modeling, continuous human body motion data can be obtained (such as joint coordinates and joint angles) for risk assessment analysis using existing risk assessment algorithms. The presented framework enables risk evaluation by detecting awkward body postures and evaluating the handled force/load and frequency that cause ergonomic risks during manufacturing operations. The results of the analysis are expected to facilitate the development of modified work to the workstation, which will potentially reduce injuries and workers’ compensation insurance costs in the long term for construction manufacturers. The proposed framework can also be expanded to evaluate workstations in the design phase without the need for physical imitation by human subjects. In this paper, the proposed 3D visualization-based ergonomic risk assessment methodology is validated through an optical marker-based motion capture experiment for a lifting task in order to prove the feasibility and reliability of the framework. It is also compared to the traditional manual observation method. Three subjects are selected to conduct the experiment and three levels of comparison are completed: joint angles comparison, risk rating comparison for body segments, and Rapid Entire Body Assessment/Rapid Upper Limb Assessment (REBA/RULA) total risk rating and risk level comparison.
    publisherAmerican Society of Civil Engineers
    title3D Visualization-Based Ergonomic Risk Assessment and Work Modification Framework and Its Validation for a Lifting Task
    typeJournal Paper
    journal volume144
    journal issue1
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/(ASCE)CO.1943-7862.0001412
    page04017093
    treeJournal of Construction Engineering and Management:;2018:;Volume ( 144 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian