YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Unified Size-Effect Law for Intact Rock

    Source: International Journal of Geomechanics:;2016:;Volume ( 016 ):;issue: 002
    Author:
    Hossein Masoumi
    ,
    Serkan Saydam
    ,
    Paul C. Hagan
    DOI: 10.1061/(ASCE)GM.1943-5622.0000543
    Publisher: American Society of Civil Engineers
    Abstract: A suite of laboratory testing was performed on Gosford sandstone samples having a range of sizes, including point-load and uniaxial compressive tests. A unified size-effect law (USEL), based on the work by Zdenek Bazant, involving fracture energy as well as fractal theories, was introduced. It was shown that USEL correlates well with the ascending and descending uniaxial compressive strength trends obtained from Gosford sandstone as well as five other rock types reported by Brian Hawkins. Fractal characteristics found to be the primary mechanism for ascending strength trends and surface flaws could be considered as a secondary mechanism. The influence of the contact area on the size-effect behavior of point-load results was investigated using a new approach. This approach was novel in the way it incorporated the load contact area. Determination of the point-load strength index using this new approach led to opposite size-effect trends compared with those observed using a conventional point-load strength index. Hence, the utilization of USEL leads to better simulation of the new point-load strength index data.
    • Download: (30.70Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Unified Size-Effect Law for Intact Rock

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245592
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorHossein Masoumi
    contributor authorSerkan Saydam
    contributor authorPaul C. Hagan
    date accessioned2017-12-30T13:06:03Z
    date available2017-12-30T13:06:03Z
    date issued2016
    identifier other%28ASCE%29GM.1943-5622.0000543.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245592
    description abstractA suite of laboratory testing was performed on Gosford sandstone samples having a range of sizes, including point-load and uniaxial compressive tests. A unified size-effect law (USEL), based on the work by Zdenek Bazant, involving fracture energy as well as fractal theories, was introduced. It was shown that USEL correlates well with the ascending and descending uniaxial compressive strength trends obtained from Gosford sandstone as well as five other rock types reported by Brian Hawkins. Fractal characteristics found to be the primary mechanism for ascending strength trends and surface flaws could be considered as a secondary mechanism. The influence of the contact area on the size-effect behavior of point-load results was investigated using a new approach. This approach was novel in the way it incorporated the load contact area. Determination of the point-load strength index using this new approach led to opposite size-effect trends compared with those observed using a conventional point-load strength index. Hence, the utilization of USEL leads to better simulation of the new point-load strength index data.
    publisherAmerican Society of Civil Engineers
    titleUnified Size-Effect Law for Intact Rock
    typeJournal Paper
    journal volume16
    journal issue2
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0000543
    page04015059
    treeInternational Journal of Geomechanics:;2016:;Volume ( 016 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian