YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    EEG Signal-Processing Framework to Obtain High-Quality Brain Waves from an Off-the-Shelf Wearable EEG Device

    Source: Journal of Computing in Civil Engineering:;2018:;Volume ( 032 ):;issue: 001
    Author:
    Houtan Jebelli
    ,
    Sungjoo Hwang
    ,
    SangHyun Lee
    DOI: 10.1061/(ASCE)CP.1943-5487.0000719
    Publisher: American Society of Civil Engineers
    Abstract: Investigating brain waves collected by an electroencephalogram (EEG) can be useful in understanding human psychosocial conditions such as stress, emotional exhaustion, burnout, and mental fatigue. Recently, an off-the-shelf wearable EEG device, which is wireless, lightweight, and affordable, has become available so that field construction workers’ psychosocial status can be explored without interfering with their ongoing work. However, capturing high-quality EEG signals from such a device can be very challenging at real construction sites because of the signal artifacts generated by body movement caused by physically demanding work. To address this issue, the authors propose an EEG signal-processing framework that can acquire high-quality EEG signals at real construction sites using a wearable EEG device. Specifically, the signal-processing framework reduces noises and is thus able to extract quality EEG signals. This framework is validated by examining whether brain activation (particularly by body movements) can be identified using the processed EEG signal applied to eight field construction workers under working (i.e., active) and not working (i.e., inactive) conditions. Specifically, mean power spectral density (PSD) of the EEG beta frequency range is calculated from electrodes near the motor cortex, the part of the brain that controls voluntary movements. A significant difference in mean PSD in the beta frequency range between active and inactive conditions demonstrates that the processed EEG signal, based on the proposed framework, captures brain activation. The results show the potential of the proposed signal-processing framework to monitor workers’ brain wave patterns in the field with a wearable EEG device, opening up an opportunity to assess workers’ psychosocial status in construction so that any psychosocial problems of workers can be investigated.
    • Download: (2.472Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      EEG Signal-Processing Framework to Obtain High-Quality Brain Waves from an Off-the-Shelf Wearable EEG Device

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245553
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorHoutan Jebelli
    contributor authorSungjoo Hwang
    contributor authorSangHyun Lee
    date accessioned2017-12-30T13:05:51Z
    date available2017-12-30T13:05:51Z
    date issued2018
    identifier other%28ASCE%29CP.1943-5487.0000719.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245553
    description abstractInvestigating brain waves collected by an electroencephalogram (EEG) can be useful in understanding human psychosocial conditions such as stress, emotional exhaustion, burnout, and mental fatigue. Recently, an off-the-shelf wearable EEG device, which is wireless, lightweight, and affordable, has become available so that field construction workers’ psychosocial status can be explored without interfering with their ongoing work. However, capturing high-quality EEG signals from such a device can be very challenging at real construction sites because of the signal artifacts generated by body movement caused by physically demanding work. To address this issue, the authors propose an EEG signal-processing framework that can acquire high-quality EEG signals at real construction sites using a wearable EEG device. Specifically, the signal-processing framework reduces noises and is thus able to extract quality EEG signals. This framework is validated by examining whether brain activation (particularly by body movements) can be identified using the processed EEG signal applied to eight field construction workers under working (i.e., active) and not working (i.e., inactive) conditions. Specifically, mean power spectral density (PSD) of the EEG beta frequency range is calculated from electrodes near the motor cortex, the part of the brain that controls voluntary movements. A significant difference in mean PSD in the beta frequency range between active and inactive conditions demonstrates that the processed EEG signal, based on the proposed framework, captures brain activation. The results show the potential of the proposed signal-processing framework to monitor workers’ brain wave patterns in the field with a wearable EEG device, opening up an opportunity to assess workers’ psychosocial status in construction so that any psychosocial problems of workers can be investigated.
    publisherAmerican Society of Civil Engineers
    titleEEG Signal-Processing Framework to Obtain High-Quality Brain Waves from an Off-the-Shelf Wearable EEG Device
    typeJournal Paper
    journal volume32
    journal issue1
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000719
    page04017070
    treeJournal of Computing in Civil Engineering:;2018:;Volume ( 032 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian